Skip to main content

Table 3 Comparison of the classification performance for different models in the test dataset

From: Improving the performance of deep learning models in predicting and classifying gamma passing rates with discriminative features and a class balancing technique: a retrospective cohort study

 

AUC

SEN

SPE

MSE

SMSE

WMSE

MSE

SMSE

WMSE

MSE

SMSE

WMSE

FS1

0.78

0.77

0.79

0.45 (10/22)

0.55 (12/22)

0.55 (12/22)

0.90 (330/366)

0.89 (325/366)

0.87 (320/366)

FS2

0.78

0.79

0.83

0.45 (10/22)

0.55 (12/22)

0.59 (13/22)

0.90 (329/366)

0.89 (327/366)

0.88 (321/366)

FS3

0.80

0.82

0.86

0.50 (11/22)

0.59 (13/22)

0.64 (14/22)

0.90 (330/366)

0.90 (329/366)

0.89 (325/366)

FS4

0.83

0.86

0.87

0.59 (13/22)

0.64 (14/22)

0.68 (15/22)

0.91 (332/366)

0.89 (327/366)

0.89 (324/366)

FS5

0.88

0.88

0.92

0.64 (14/22)

0.68 (15/22)

0.77 (17/22)

0.91 (334/366)

0.90 (329/366)

0.89 (326/366)

FS6

0.86

0.86

0.91

0.64 (14/22)

0.68 (15/22)

0.73 (16/22)

0.90 (331/366)

0.90 (329/366)

0.90 (329/366)

FS7

0.85

0.82

0.87

0.59 (13/22)

0.59 (13/22)

0.68 (15/22)

0.90 (328/366)

0.89 (326/366)

0.89 (324/366)

FS8

0.81

0.81

0.84

0.50 (11/22)

0.55 (12/22)

0.59 (13/22)

0.91 (332/366)

0.89 (325/366)

0.88 (323/366)

  1. FS = feature set; AUC = the area under the receiver operating characteristic curve; SEN = sensitivity; SPE = specificity; MSE = mean squared error; SMSE = MSE loss with re-sampling; WMSE = weighted MSE