Skip to main content

Table 5 Comparison of previous studies

From: Diffusion-CSPAM U-Net: A U-Net model integrated hybrid attention mechanism and diffusion model for segmentation of computed tomography images of brain metastases

 

Proposed Model

GAN + Mask-R-CNN + CRF [20]

PAM-U-Net [21]

ST-U-Net [21]

SEA-U-Net [21]

SERR-U-Net [21]

DSC

0.793 ± 0.133

0.726 ± 0.128

0.753 ± 0.172

0.747 ± 0.158

0.730 ± 0.135

0.718 ± 0.156

IoU

0.692 ± 0.133

0.640 ± 0.136

0.672 ± 0.159

0.667 ± 0.143

0.648 ± 0.150

0.625 ± 0.141

Accuracy

0.955 ± 0.118

0.915 ± 0.118

0.948 ± 0.125

0.930 ± 0.131

0.919 ± 0.118

0.898 ± 0.122

Sensitivity

0.803 ± 0.121

0.765 ± 0.131

0.721 ± 0.116

0.749 ± 0.120

0.702 ± 0.131

0.694 ± 0.126

Specificity

0.938 ± 0.140

0.922 ± 0.117

0.963 ± 0.104

0.951 ± 0.112

0.978 ± 0.106

0.946 ± 0.114

HD

5.606 ± 0.990

7.356 ± 0.603

6.912 ± 0.620

7.241 ± 0.835

7.539 ± 0.547

7.706 ± 0.728

  1. DSC, Dice similarity coefficient; IoU, intersection over union; HD, Hausdorff distance