Skip to main content

Table 2 Performance of deep-learning models for IGTV delineation using MIP images for the test cohort

From: Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections

 

IGTVMIP−manu

Attention U-net

U-net

V-net

DSC

0.713 ± 0.117

0.852 ± 0.053

0.829 ± 0.055

0.819 ± 0.073

Surface DSC

0.466 ± 0.231

0.760 ± 0.130

0.688 ± 0.150

0.673 ± 0.123

HD95 (mm)

4.146 ± 2.229

3.209 ± 2.136

3.264 ± 2.015

3.903 ± 2.157

Sensitivity

0.571 ± 0.151

0.818 ± 0.108

0.849 ± 0.095

0.759 ± 0.142

Specificity

1.000 ± 0.000

0.999 ± 0.001

0.999 ± 0.001

0.999 ± 0.001

  1. Note: The IGTVMIP−manu column presents the comparison between the manually contoured IGTV on MIP images and the gold standard IGTV (IGTVgt), whereas the model columns present the comparison between the model predictions and the IGTVgt. The model with the best performance in each metric is highlighted in bold