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Abstract
Background: To evaluate the effects of direct machine parameter optimization in the treatment planning of intensity-
modulated radiation therapy (IMRT) for hypopharyngeal cancer as compared to subsequent leaf sequencing in Oncentra
Masterplan v1.5.

Methods: For 10 hypopharyngeal cancer patients IMRT plans were generated in Oncentra Masterplan v1.5 (Nucletron BV,
Veenendal, the Netherlands) for a Siemens Primus linear accelerator.

For optimization the dose volume objectives (DVO) for the planning target volume (PTV) were set to 53 Gy minimum dose and
59 Gy maximum dose, in order to reach a dose of 56 Gy to the average of the PTV. For the parotids a median dose of 22 Gy
was allowed and for the spinal cord a maximum dose of 35 Gy. The maximum DVO to the external contour of the patient was
set to 59 Gy. The treatment plans were optimized with the direct machine parameter optimization ("Direct Step & Shoot", DSS,
Raysearch Laboratories, Sweden) newly implemented in Masterplan v1.5 and the fluence modulation technique ("Intensity
Modulation", IM) which was available in previous versions of Masterplan already. The two techniques were compared with
regard to compliance to the DVO, plan quality, and number of monitor units (MU) required per fraction dose.

Results: The plans optimized with the DSS technique met the DVO for the PTV significantly better than the plans optimized
with IM (p = 0.007 for the min DVO and p < 0.0005 for the max DVO). No significant difference could be observed for
compliance to the DVO for the organs at risk (OAR) (p > 0.05). Plan quality, target coverage and dose homogeneity inside the
PTV were superior for the plans optimized with DSS for similar dose to the spinal cord and lower dose to the normal tissue.
The mean dose to the parotids was lower for the plans optimized with IM. Treatment plan efficiency was higher for the DSS
plans with (901 ± 160) MU compared to (1151 ± 157) MU for IM (p-value < 0.05).

Renormalization of the IM plans to the mean of the dose to 95% of the PTV (D95) of the DSS plans, resulted in similar target
coverage and dose to the parotids for both strategies, at the cost of a significantly higher dose to the normal tissue and maximum
dose to the target. The relative volume of the PTV receiving 107% or more of the prescription dose V107 increased to 35.5% ±
20.0% for the IM plan as compared to a mean of 0.9% ± 0.9% for the DSS plan.

Conclusion: The direct machine parameter optimization is a major improvement compared to the fluence modulation with
subsequent leaf sequencing in Oncentra Masterplan v1.5. The resulting dose distribution complies better with the DVO and
better plan quality is achieved for identical specification of DVO. An additional asset is the reduced number of MU as compared
to IM.
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Background
In the treatment planning of radiation therapy of
hypopharyngeal cancer the major challenge is to spare the
spinal cord and preserve the function of the parotid
glands without compromising the dose to the target [1-8].
Because the parotid glands are often in close proximity to
the target and the spinal cord is located in a concavity of
the target this can be best achieved by intensity modulated
radiation therapy (IMRT) [9-14].

Various treatment planning systems with different optimi-
zation algorithms are commercially available for IMRT.
Some of them use the optimization of fluence matrices,
which have to be converted in deliverable MLC segments
after optimization. Because of limitations of the MLC set-
tings the resulting fluence is different from the optimiza-
tion result and therefore no longer optimal [15]. Other
systems incorporate the MLC sequencing in the optimiza-
tion process [16,17], or optimize the machine parameters
directly [18,19]. In both cases the MLC position is taken
into account in the optimization process and the resulting
optimal fluence can be delivered by the linac without fur-
ther approximations [15]. This is usually refered to as
direct machine parameter optimization (DMPO) or direct
aperture optimization (DAO) [20-29].

The aim of this study is to compare the direct machine
parameter optimization versus fluence optimization with
subsequent leaf sequencing for IMRT of hypopharyngeal
carcinoma with respect to compliance with the DVO, effi-
ciency and plan quality.

Methods
Patients
10 patients with hypopharyngeal cancer, 9 male and 1
female, were included in the planning study.

Equipment
Treatment planning was performed with the treatment
planning system (TPS) Oncentra Masterplan® v1.5 SP1
(Nucletron BV, Veenendal, the Netherlands) on a Siemens
Primus linear accelerator (linac) with a photon energy of
6 MV and a double focused multileaf collimator (MLC)
with 29 leaf pairs with 1 cm resolution at isocenter for the
27 inner leaf pairs and 6.5 cm for the two outer leaf pairs.
Since the two outer leaf pairs are not taken into account
by the optimization module and the maximum overtravel
of the leaves is 10 cm, the maximally useable field size for
IMRT is 20 cm × 27 cm.

The TPS Oncentra Masterplan v1.5 has two options for the
optimization process, both products of RaySearch Labora-
tories AB, Sweden: In the so called "Intensity Modulation"
(IM) option the optimization is performed for the energy
fluence of the beams and the MLC segments are created

afterwards in a separate leaf sequencing process. The user
can define a maximal number of segments and the
sequencer will iteratively create a number of segments as
close as possible and below or equal to the predefined
maximum. The final dose calculation is performed based
on these segments. In the "Direct Step and Shoot" (DSS)
option a fluence optimization with subsequent leaf
sequencing as described above is performed for a few iter-
ations to get an initial guess for the segments. In the next
step, the gradients of the objective function are calculated
with respect to leaf positions and weights, which allows to
optimize the MLC segments directly. The result of this
optimization are MLC segments ready for delivery with-
out further post-processing. This is also known as direct
machine parameter optimization [15]. A detailed descrip-
tion can be found in [19].

Other parameters regarding the MLC segments which can
be chosen by the user include the minimum number of
monitor units per segment and fraction, the minimum
number of adjacent open leaf pairs and the minimum size
of a segment.

Structure definition
The planning target volume (PTV) in the first series up to
a prescribed dose of 56 Gy encompassed in all patients the
primary tumor site in the hypopharynx and the adjuvant
lymphatics [30,31] (supraclavicular, jugulodigastric,
upper and middle jugular chain, midcervical, submaxil-
lary, spinal accessory and retropharyngeal lymph nodes
(RPLN) = Level II-VI + RPLN). Because of the propensity
of hypopharynx cancer to spread submucosally the PTV
expands from base of scull to the upper cervical esophagus
as described in "Principles and Practice of Radiation
Oncology" [32]. Facing the free communication with
both sides of lymphatic drainage in all cases both sides of
the neck were enclosed in the PTV. As organs at risk the
parotid gland on both sides and the spinal cord were
delineated.

Treatment goals
IMRT optimization was performed on the PTV with a goal
dose of 56 Gy to the average of the PTV. Since there is no
option to define a DVO for the average dose in the TPS,
the minimum and maximum DVO for the PTV were set
symmetrically to the desired average dose, i.e. the mini-
mum DVO to 53 Gy representing 95% of the goal and the
maximum DVO to 59 Gy representing 105% of the goal
dose. For the parotid glands no more than 50% of the vol-
ume were allowed to receive more than 22 Gy or 39% of
the goal dose, and the maximal dose for the spinal cord
was chosen to be 35 Gy or 63% of the goal dose. The DVO
to the organs at risk were chosen relatively low with
respect to the additional dose given by the boost treat-
ment or other dose prescription schemes. For a total pre-
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scription dose of 70 Gy this would correspond to a max
dose of 44 Gy to the spinal cord and 27.5 Gy to no more
than 50% of the parotids which complies with the RTOG
protocol 0022 for IMRT for oropharyngeal cancer. An
overview over the DVO used in this study is given in table
1.

Radiation technique
A 7 field coplanar treatment plan with beam angles of 0°,
51°, 103°, 154°, 206°, 257°, 308° was generated in Mas-
terplan v1.5 with a photon energy of 6 MV for each
patient. Using the dose volume objectives given in table 1,
the plan was optimized with the DSS option first. The
maximal number of segments was set to 70 – 100 depend-
ing on the patient geometry and the complexity of the
structures. The parameter "minimal open field size"
which limits the minimal size of each segment was set to
4 cm2, the minimal number of adjacent open leaf pairs to
2, and the minimal number of MU per fraction and seg-
ment to 4. Dose calculation was performed using the pen-
cil beam algorithm with inhomogeneity correction and a
dose grid resolution of 0.4 cm3. The maximum number of
iterations in the optimization process was set to 50 – 70.

The weight for the DVO of the PTV and the external struc-
ture was primarily set to 3000, for organs at risk to 300.
During the optimization process the weights and number
of segments were adapted slightly in some cases in order
to improve the result.

Once a satisfying result was achieved, a second plan was
created and optimized with the IM option using identical
optimization parameters. The dose was normalized to the
average dose of the PTV, the prescription dose was the
goal dose of 56 Gy.

Evaluation
Since one objective of the study was to quantify the qual-
ity of the optimization algorithm, treatment plans were
evaluated after optimization (and segmentation for IM)

and final dose calculation without performing any addi-
tional renormalization to the goal dose. As a measure for
how good the DVO were fulfilled by the respective opti-
mization strategy, absolute dose differences between the
DVO and the corresponding dose volume histogram
(DVH) points of the treatment plans were calculated and
compared for the two optimization strategies. The differ-
ences are given in absolute values for DVH points which
violate the DVO. For DVH points which fulfill the DVO,
the difference value is set to 0. For the PTV D95 and D5
were used for comparison to the minimum and maxi-
mum DVO to account for the fact that part of the PTV is
located in the build-up region and to avoid evaluation of
cold and hot spots of very small volumes. To assess the
efficiency of the treatment, the number of monitor units
(MU) and segments were reported and compared.

For evaluation of the plan quality the dose volume histo-
grams were analyzed with regard to target coverage, dose
homogeneity and OAR sparing. For the PTV the isodoses
encompassing 95% and 5% of the volume D95 and D5, the
average dose Daverage, and the volumes V95 and V107 cov-
ered by 95% and 107% of the prescription dose Dprescibed
of 56 Gy were computed. Target dose homogeneity was
quantified using the gradient of the DVH of the PTV H =
(D5 - D95)/Daverage, target coverage using V95 [33]. For the
OAR the median dose D50 to the parotid glands and the
maximum dose Dmax to the spinal cord were recorded.

To investigate if simple renormalisation of the two com-
peting treatment plans could improve the plan with the
poorer quality such that it would become comparable to
the better plan, the evaluation of the DVH was also per-
formed for renormalization of the treatment plans.

For statistical analysis a paired samples t-test was per-
formed in SPSS 13.0, the significance level was chosen to
be 0.05.

Dosimetric validation of the plans was beyond the scope
of this planning study and was therefore not included in
the manuscript.

Results
Mean values and standard deviations of the dose differ-
ences between DVO and corresponding DVH points are
given in table 2. Significant differences between the IM
and the DSS optimized plans can be observed for the PTV
and external contour (p-value < 0.05). The minimum
DVO for the PTV was violated by the IM optimization
with a mean dose difference of 3.4 Gy ± 2.7 Gy, the max-
imum DVO by 1.1 Gy ± 0.4 Gy, and the maximum DVO
for the external contour by 4.3 Gy ± 1.3 Gy. The violations
of these DVO by the DSS optimization were lower, i.e. 0.5
Gy ± 0.5 for the min DVO of the PTV, 0.1 Gy ± 0.1 Gy for

Table 1: Dose Volume Objectives (DVO) and weights used for 
optimization.

Structure DVO 
type

weight Dose in 
Gy

Dose in 
%

Volume 
in %

PTV min 3000 53 95 100
max 3000 59 105 0

left 
parotid

max 300 22 39 50

right 
parotid

max 300 22 39 50

spinal 
cord

max 300 35 63 0

External max 3000 60 107 0
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the max DVO of the PTV, and 2.2 Gy ± 1.3 Gy for the max-
imum DVO of the external contour.

For the parotids and the spinal cord no significant differ-
ences were observed for the two optimization strategies
(p-value > 0.05). The mean values of DVO violations were
for the left parotid 0.2 Gy ± 0.7 Gy (IM) and 0.6 Gy ± 1.0
Gy (DSS), for the right parotid 0.2 Gy ± 0.4 Gy (IM) and
0.3 Gy ± 0.5 Gy (DSS), and for the spinal cord 0.0 Gy ± 0.1
Gy (IM) and 0.0 Gy ± 0.0 Gy (DSS).

Treatment plan efficiency was higher for the DSS plans
with (901 ± 160) MU per 2 Gy fraction compared to
(1151 ± 157) MU for IM (p-value < 0.05). The number of
segments was in the same range for both optimization
strategies (77 ± 8).

Figure 1 shows a comparison of the isodoses generated
with IM and DSS for two representative transversal slices

and the central sagittal plane of one of the patients. Figure
2 shows the corresponding DVH. Mean values, standard
deviations and p-values of selected DVH points of all
patients are given in table 3. The evaluation of the treat-
ment plan quality by means of DVH showed a significant
difference for the PTV coverage and homogeneity (p <
0.05). Target coverage given by the mean value of V95 was
significantly lower for IM plans (81.0% ± 8.3%) than for
the DSS plans (91.9% ± 3.3%) (p = 0.002). V107 was larger
for IM (6.7% ± 2.5%) than for DSS (0.9% ± 0.9%), with a
p-value p < 0.0005. The mean value for the homogeneity,
given by the relative dose difference H = (D5 - D95)/Daverage
of the DVH of the PTV, was higher for the IM plan (18.9%
± 5.4%) than for the DSS (10.8% ± 1.7%, p < 0.0005),
which means the DVH was steeper and a significantly
more homogeneous dose distribution inside the target
could be achieved with DSS. Daverage was in the same range
for both techniques with 55.7 Gy ± 1.0 Gy (IM) and 56.0
Gy ± 0.2 Gy (DSS).

The dose to the parotids was lower for the IM optimized
plans than for the DSS plans with a mean dose of 19.0 Gy
± 2.4 Gy (IM) and 22.0 Gy ± 1.6 Gy (DSS) for the left
parotid (p = 0.007) and 20.4 Gy ± 1.8 Gy (IM) and 21.9
Gy ± 0.9 Gy (DSS) for the right parotid (p = 0.03). The
maximum dose to the spinal cord was comparable in both

Table 2: Comparison of plan compliance to the DVO

IM DSS

mean SD mean SD p-value

PTV
Dmin/
D95

3.4 2.7 0.5 0.5 0.007

Dmax/
D5

1.1 0.4 0.1 0.1 < 0.0005

left 
parotid
D50 0.2 0.7 0.6 1.0 0.4
right 
parotid
D50 0.2 0.4 0.3 0.5 0.6
spinal 
cord
Dmax 0.0 0.1 0.0 0.0 0.3
externa
l
Dmax 4.3 1.3 2.2 1.3 0.001

Mean values and standard deviations of the dose differences (in Gy) 
between DVO and corresponding DVH points for the plans 
optimized with IM and DSS for all patients. Positive values are used 
for DVH points which violate the DVO. For DVH points which fulfill 
the DVO, the difference values are set to 0. Significant differences 
between the IM and the DSS optimized plans can be observed for 
the PTV and external contour (p-value < 0.05). For the parotids and 
the spinal cord no significant differences can be observed for the 
two optimization strategies.

Isodoses of the plans optimized with a) IM and b) DSS for one of the patients in two representative transversal slices and the central sagittal planeFigure 1
Isodoses of the plans optimized with a) IM and b) DSS for 
one of the patients in two representative transversal slices 
and the central sagittal plane. The better target coverage is 
visible particularly in the region around the right parotis. The 
red arrows point out regions of underdosage in the plan 
optimized with IM.
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cases with 31.1 Gy ± 2.9 (IM) and 30.5 Gy ± 3.2 Gy (DSS).
The maximum dose to the external contour was higher for
IM (64.3 Gy ± 1.3 Gy) than for DSS (62.2 Gy ± 1.3 Gy).

Renormalization of the IM plans to a D95 of 52.6 Gy (the
mean of the DSS plans) did improve target coverage of the
IM plans to a V95 of 93.4% ± 1.5 with a mean dose to the
parotids still below the DVO of 22 Gy (20.2 Gy ± 2.8 Gy
and 21.7 Gy ± 1.6 Gy). However, V107 increased at the
same time to 35.5% ± 20.0% and the maximum dose to
the external contour to 68.4 Gy ± 5.2 Gy. The number of
MU required for one fraction increased to 1233 ± 233, i.e.
to the 1.4 fold of the DSS technique. Mean values, stand-
ard deviations, and p-values of the renormalised plans are
listed in table 4.

Discussion
The plans optimized with the DSS technique met the
DVO for the PTV and external contour significantly better
than the plans optimized with IM, with higher target cov-
erage and dose homogeneity inside the target and lower
dose to the external contour. For the organs at risk, no sig-
nificant difference could be observed with regard to viola-
tions of the DVO. The plans optimized with IM resulted
in even lower dose to the parotids than required by the
DVO, the DVO for the parotids were more than fulfilled
at the cost of PTV coverage, dose homogeneity and dose to
the normal tissue, which were violated.

This can be explained by the fact, that in IM the optimiza-
tion result is an optimized fluence which has to be con-
verted into deliverable MLC segments by subsequent leaf
sequencing afterwards. This sequencing process decreases
the fluence levels and leads to a dose distribution which is
further away from the original optimization result, the
DVH smear out. In the cases studied here this leads to a
lower dose to the parotids, a lower minimal dose to the
PTV and a higher maximal dose to the PTV. In the DSS
optimization the segments are optimized directly, the flu-
ence resulting from the optimization process can be deliv-
ered without any further approximations and the optimal
dose distribution can be achieved. Figure 3 shows a com-
parison of the DVH of the result of an IM optimization
before and after MLC sequencing. It shows that the DVO
of the PTV and the parotids are closely met before segmen-
tation. After segmentation the DVH of the PTV becomes
shallower, i.e. less homogeneous, resulting in a lower
minimum dose and a higher maximum dose to the PTV.
At the same time the median dose to the parotids, which
was close to the DVO before segmentation, becomes
lower after segmentation, over-fullfilling the DVO.

Table 3: Comparison of plan quality for the plans resulting from 
the optimization

IM DSS p-value

PTV mean SD mean SD

PTV
D95 49.6 2.7 52.6 0.6 0.005
D5 60.1 0.4 58.6 0.4 < 0.0005
D 
average

55.7 1.0 56.0 0.2 0.3

H = (D5-
D95)/
Daverage

18.9 5.4 10.8 1.7 < 0.0005

V95* 81.0 8.3 91.9 3.3 0.002
V107* 6.7 2.5 0.9 0.9 < 0.0005
left 
parotid
D50 19.0 2.4 22.0 1.6 0.007
right 
parotid
D50 20.4 1.8 21.9 0.9 0.03
spinal 
cord
Dmax 31.1 2.9 30.5 3.2 0.4
external
Dmax 64.3 1.3 62.2 1.3 0.001
Efficienc
y
# 
Segments

77.0 7.9 76.6 7.9 0.9

# MU 1151 157 901 160 0.007

Mean values, standard deviations and p-values for the treatment plans 
resulting from the optimization with IM and DSS respectively. Dose 
values are given in Gy, the homogeneity H in % of the average dose 
and volumes in % of the volume of interest.

Comparison of the DVH of the plans optimized with IM and DSS for one of the patientsFigure 2
Comparison of the DVH of the plans optimized with IM and 
DSS for one of the patients. The DVH of the PTV show a 
better target coverage and homogeneity for the plan opti-
mized with DSS. The DVH of the parotids illustrates the 
compliance to the DVO of both plans, indicated by the pur-
ple arrow.
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Renormalization could not improve the IM plan, since
simple renormalization only shifts the DVH along the
dose axis but cannot change the steepness of the DVH.
Thus, target coverage can be improved, but this will at the
same time always cause higher maximum dose and higher
dose to the other organs.

Conclusion
The direct machine parameter optimization is a major
improvement compared to the fluence modulation with
subsequent leaf sequencing in Oncentra Masterplan. The
resulting dose distribution complies better with the DVO
and better plan quality is achieved for identical specifica-
tion of DVO. An additional asset is the reduced number of
MU as compared to IM leading to a more efficient treat-
ment delivery with less integral dose.

Abbreviations
DSS Direct Step & Shoot

DVH Dose Volume Histogram

DVO Dose Volume Objectives

IM Intensity Modulation: Optimization with subsequent
sequencing

IMRT Intensity Modulated Radiation Therapy

MLC Multi Leaf Collimator

MU Monitor Units

PTV Planning Target Volume

TPS Treatment Planning System
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Table 4: Comparison of plan quality for the renormalized plans

IM DSS p-value

mean SD mean SD

PTV
D95 52.6 0 52.6 0.6 1.0
D5 63.9 3.9 58.6 0.4 0.002
V95* 93.4 1.5 91.9 3.3 0.2
V107* 35.5 20.0 0.9 0.9 0.001
left 
parotid
D50 20.2 2.8 22.0 1.6 0.06
right 
parotid
D50 21.7 1.6 21.9 0.9 0.6
spinal 
cord
Dmax 33.1 3.1 30.5 3.2 0.02
external
Dmax 68.4 5.2 62.2 1.3 0.003
Efficienc
y
# MU 1233 233 901 160 0.003

Mean values, standard deviations and p-values for the resulting 
treatment plans renormalized to a D95 of 52.6 Gy, which is the mean of 
the D95 of the DSS plans. Dose values are given in Gy, volumes in % of 
the volume of interest.

Comparision of the DVH of a plan optimized with IM before and after MLC sequencingFigure 3
Comparision of the DVH of a plan optimized with IM before 
and after MLC sequencing. The DVO for the parotids (purple 
arrow) and PTV (red arrows) are closely met before MLC 
sequencing (left hand side). After MLC sequencing (right 
hand side) the DVH of the PTV becomes shallower, the 
DVO are severely violated. At the same time the median 
dose to the parotids, which was close to the DVO before 
segmentation, becomes lower after segmentation, over-full-
filling the DVO.
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