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Abstract

The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts
of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets.
Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this
revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings
into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS
platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be
given on potential clinical applications of this innovative technique in the field of radiation oncology.

Introduction
Recent technological advances in DNA sequencing with
greater speed and resolution at lower costs has provided
new insights in cancer genetics. The next-generation se-
quencing (NGS) technology is tremendously facilitating
the in-depth genome-wide search for genetic alterations
which might significantly contribute to aggressive and/or
treatment-resistant phenotypes of cancers, thereby es-
tablishing the basis for the development of molecularly
targeted therapy. High-throughput sequencing of dis-
tinct cancer entities in large-scale projects has improved
our understanding of the disease-specific mutational pat-
terns [1–4] and the ‘Darwinian’ selection forces involved
in subclonal tumor evolution resulting in highly hetero-
geneous tumors. Initially, NGS has been developed for de-
tection of DNA-based alterations. However, it can also
assess other molecular aberrations, including those in the
epigenome [5, 6], transcriptome [7, 8] or RNAome [9]. In
this review we will only briefly discuss the technical
principle of NGS for DNA sequence analysis. For more de-
tailed information we would like to refer the reader to the
excellent reviews of Metzker et al. [10], Meyerson et al. [2]

and Wong et al. [11]. We will instead focus on key achieve-
ments in cancer genetics and potential clinical applications of
this innovative technique in the field of radiation oncology.

The advantages of NGS
Next-generation sequencing has rapidly been evolv-
ing within the last decade [10]. This high-throughput
method offers several advantages over classical capillary
electrophoresis-based ‘Sanger’ sequencing including in-
creased speed and resolution at dramatically lower costs
compared to the older sequencing technologies. To
illustrate the remarkable progress achieved by NGS,
the Human Genome Project which used first-generation
‘Sanger’ sequencing technology to sequence the human
genome took over 10 years and nearly 3 billion USD to
achieve its goal [12–14]. By next-generation sequencing
an individual human genome can now be sequenced in
less than 2 weeks for approximately 5000 USD [15].
In theory, the whole genome does not need to be se-

quenced to identify genetic alterations in most human
cancer-associated genes. More than 85 % of pathogenic
mutations are found within the protein-coding regions
of the genome [16], which collectively are referred to as
the “human exome”. This already dramatically reduces
the regions that need to be sequenced for personalized
oncology, thereby decreasing costs and time for whole
exome sequencing of one sample to approximately 1,500
USD and 48 h (the exact prices mainly depend on the
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NGS platform, the required sequencing depth and are
exclusive of the costs for bioinformatics). Furthermore
and probably even more relevant for integration into
clinical trials [17] or routine diagnostic applications [18],
focusing on a selected panel of genes with established
impact in cancer progression and/or a proven role in
treatment resistance is possible which offers the oppor-
tunity for detection of rare genetic variants at very high
sensitivity [2, 17] in all types of samples including archival
formalin-fixed, paraffin-embedded (FFPE) tissue [18, 19]
and plasma cell-free circulating tumor DNA [20].

The technical principle behind NGS
DNA sequencing was initially developed in 1975 by
Sanger and Coulson [21] and these techniques are still
used widely today. ‘Sanger’ sequencing is based on the
use of oligonucleotide primers specifically binding to
either side of the target DNA region which is then amp-
lified in a polymerase chain reaction (PCR). The use of
chain-terminating nucleotides in the DNA synthesis
process allows the generation of different copies of the
original DNA template at all possible lengths, which are
separated by capillary electrophoresis. By using specifically
labelled chain-terminating nucleotides (A, C, T or G) the
original DNA sequence can be assembled.
NGS is based on the principle of sequencing in a mas-

sively parallel fashion. This means that up to millions of
DNA fragments can be sequenced at the same time.
Initially, DNA is fragmented into short segments called
a shotgun library. Adaptors are ligated to the ends of
each fragment. These adaptors are themselves short
sequences of DNA which have primer binding sites for
subsequent amplification. The shotgun library can subse-
quently be enriched for the sequences of interest, using
different approaches [22, 23]. As one example, probes
which correspond to the target regions, e.g. the human
exome, and which are immobilized on beads or a solid
plate can be used in order to physically separate the target
DNA fragments from the remaining DNA. Alternatively,
custom arrays can be designed to enrich for specific
groups of genes of interest (cancer gene panels). Following
enrichment, the fragment library can be sequenced on
next-generation sequencing platforms from several manu-
facturers (for a comprehensive review of the differing plat-
form techniques see Metzker et al. [10]. Recording of the
captured sequences occurs at live mode in a massively par-
allel fashion when the fluorescent signals from dye-labelled
nucleotides in the nascent DNA strands on each bead,
channel or cluster are detected during DNA synthesis.

The challenge of big data analysis from NGS
Whilst large amounts of sequencing data can be generated
relatively quickly, data analysis can be time-consuming
and difficult. The first problem is the large size of NGS

raw data files, especially for results from WES or WGS.
For example, non-compressed FASTQ files from human
WGS with a mean coverage of 30x requires up to 200
gigabytes, making data transfer and storage of even small
WGS projects a real challenge. These estimates do not
include the disk space required for any downstream ana-
lysis. Development of streamlined, highly automated pipe-
lines for pre-processing of raw data, alignment or de novo
assembly of reads, quality control, copy number variation
(CNV) and/or SNP calling is essential and high-capacity
server solutions are mandatory. The key first step of data
processing is the alignment of the sequence reads to a
reference genome. Three characteristics of NGS data
complicate this task. First, read lengths are relatively short
(in average 26–330 bp) [10] compared to capillary-based
‘Sanger’ sequencing, which decreases the likelihood that a
read can be mapped to one unique location. Second, reads
from NGS platforms contain higher rates of sequencing
errors, especially in regions of homopolymer repeats [10].
Subsequent validation of novel variants by ‘Sanger’ sequen-
cing to exclude technical sequencing errors is therefore
highly recommended. This technical limitation of NGS is
also underlined by the results from a recent study which
revealed a higher rate of false-positive single nucleotide
variations detected by WES compared to WGS and a con-
siderable fraction of insertions and deletions detected by
both WES and WGS which could not be confirmed by
subsequent Sanger sequencing [24].
By all means, in each individual case most of the iden-

tified variants will represent single nucleotide polymor-
phisms (SNPs) of no pathogenic relevance [25]. These
can be removed either by filtering against sequencing re-
sults from ‘control’ DNA of the same patient’s normal
tissue or, if such control is not available, against data sets
from public databases such as the NCBI dbSNP and the
‘1000-genomes’ project [25]. The remaining variants can
be filtered against public collections of genetic alterations
in cancer, such as the Catalogue Of Somatic Mutations In
Cancer (COSMIC) database (http://cancer.sanger.ac.uk)
which as of August 2014 contained over 2 million coding
mutations, more than 70,000 gene fusions or genome re-
arrangements and almost 700,000 abnormal copy number
variants [26]. By such an approach, genetic variants with
known/potential oncogenic function can be identified.
An additional approach to separate biologically rele-

vant from irrelevant variants often utilizes new software
tools (SIFT [27, 28], PolyPhen-2 [29], mutation-assessor
[30]) which are now widely available and help to deter-
mine which mutations may have a functional impact on
the encoded protein, which are likely to be pathogenic,
or which are rather neutral variants without biological
effect. These methods are generally based on the as-
sumption that important amino acids will be conserved
in the protein family, and that changes at well-conserved
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positions are likely to be deleterious [27]. For example,
given a protein sequence SIFT chooses related proteins
and obtains an alignment of these proteins with the query.
Based on the amino acids appearing at each position in
the alignment, SIFT calculates the probability that an
amino acid at a position is tolerated or deleterious [27].
MutSig is another algorithm which has been developed

at the Broad Institute of Harvard and MIT in 2007 [31].
MutSig is currently broadly used to identify driver muta-
tions among large numbers of passenger mutations. In
contrast to the above mentioned methods, MutSig takes
into account that background mutation processes occurred
during formation of tumors and it considers the mutations
of each gene to identify genes that were mutated more
often than expected by chance [4]. Besides looking for
abundance above background, MutSig looks for positive se-
lection in genes, i.e. increased numbers of non-synonymous
vs. silent mutations or mutation clusters at hotspots. Its ad-
vanced version (MutSigv2.0) takes also into account the
functional impact of mutations (as estimated by the above
mentioned tools SIFT, PolypPhen-2, Mutation Assessor,
etc). In addition, incorporation of the covariates DNA repli-
cation time, chromatin state (open/closed), and general
level of transcription activity into the background model
has been shown to substantially reduce the number of
false-positive findings [4].
These in-silico methods certainly assist in the filtering

process, however their results still need to be cautiously
interpreted in conjunction with the involved gene and
certainly have their limitations. Methods like MutSig
identifying driver gene mutations based on background
mutation rates rely on a correct estimation of this back-
ground rate in a given tumor type and at a defined gen-
omic region in order to keep the number of false
positives to a minimum [4]. Other algorithms under-
estimate functional changes in poorly conserved posi-
tions [32]. As a result, frequency-based methods with
loose background mutation rates will detect driver can-
didates with a probably high rate of false positives. On
the other hand, methods implementing stricter models
will identify more specific candidate lists but might
miss some true cancer driver genes. Combination of
complementary methods might overcome these limita-
tions [3] and will certainly increase the knowledge gain
from NGS studies. Last but not least, functional studies
in preclinical models for elucidation of the mode of
interaction of genetic variants with biological processes
in tumor cells are indispensable for validation of NGS
findings and are certainly mandatory before NGS tech-
nologies should move into clinical applications [33].
Translation into clinical practice can certainly only be
achieved by multidisciplinary research approaches in
order to extract meaningful diagnostic interpretation
from large NGS datasets.

Novel approaches for personalization of
radiotherapy
Over the last two decades, technological advances in
treatment planning and delivery have improved the qual-
ity of radiotherapy in terms of precise dose application
to the target volume together with minimal dose to nor-
mal tissue. Despite these achievements, a fundamental
question that remains unresolved is whether based on the
molecular profile of their tumors it is possible to prospect-
ively identify patients who are more likely to benefit from
radiotherapy. Personalized radiotherapy could be achieved
by establishing biomarkers which can classify radiosensi-
tive/-resistant tumors and/or tumor-surrounding normal
tissue before initiation of treatment. To achieve such goal,
previous studies have mostly evaluated single biomarkers
or functional assays of DNA damage repair as predictor of
intrinsic cellular radiosensitivity. Among others, assess-
ment of the cell survival fraction [34] or the number of
residual DNA double strand breaks after ex vivo irradi-
ation of tumor cells [35] or normal tissue [36, 37] as well
as in vivo determination of the extent of tumor hypoxia
[38] have been evaluated extensively. Although promising
according to preliminary clinical data, none of them have
become routine yet which might be due to low robustness
of some of these in-vivo assays [36].
The generation of high-throughput data sets in the

omics era has provided a novel and complementary op-
portunity in biomarker discovery. Using high-throughput
transcriptome analysis, it has been previously shown that
prediction of cellular radiosensitivity of tumor cell lines by
expression analysis of a defined set of genes clearly outper-
formed assays of single gene analysis [39]. The value of
this molecular signature as predictive biomarker for radio-
sensitivity was already confirmed in a large clinical cohort
[40] speaking for its clinical potential. Another interesting
approach is the use of hypoxia gene expression signatures
for selecting patients who likely benefit from the inclusion
of hypoxia-modifying drugs in regimens of radio- [41] or
radiochemotherapy [42].
Beside the influence of gene expression levels, individ-

ual differences in cellular radiosensitivity are thought to
be at least partly determined by germ-line genetic vari-
ants. Rare variants which are likely to be functional can
only be detected by high-throughput DNA sequencing,
made now affordable by the NGS technology. Up to
date, only few studies used NGS for assessment of the
exact role of SNPs for treatment outcome after radio-
therapy. Recently, the role of germ-line SNPs and rare
variants in MRE11A as predictive biomarkers of both
tumor response and toxicity following definitive radio-
therapy of muscle-invasive bladder cancer was analyzed
by this technology [43]. Carriers of at least one of six
rare MRE11A variants had a significantly higher risk of
local failure in the radiotherapy arm, whereas no such
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association was seen in the surgically treated patient
cohort [43]. It will certainly be interesting to expand such
type of analysis to a broader spectrum of cancer types.
For elucidating the role of somatic mutations in radio-

resistance NGS has first been applied in bacteria [44]. In
a model of cellular adaption to irradiation, extremely
radioresistant E.coli strains were generated from the re-
spective founder cells by repetitive cycles of increasing
irradiation doses. Whole genome sequencing revealed a
large number of genomic alterations in the radioresistant
descendants of which only few were recurrent muta-
tions, suggesting that multiple mechanisms can contrib-
ute to radiation resistance and distinct evolutionary
pathways leading to this phenotype. Intriguingly, despite
this heterogeneity, clear genetic patterns also emerged.
Not unexpectedly, mutations clustered more frequently
in genes of DNA double strand break repair.
In two recent NGS studies in locally advanced squa-

mous cell carcinoma of the head and neck (HNSCC) our
group has evaluated the role of somatic mutations in a
set of cancer-related genes for the efficacy of definitive
[45] and adjuvant chemoradiation [46]. Our studies
could confirm previous reports of poor efficacy of radio-
therapy in HNSCC tumors harboring disruptive TP53
mutations [47, 48]. For the first time, we demonstrated a
possible role of mutations in NOTCH1 and key driver
genes (PIK3CA, KRAS, NRAS and HRAS) as predictive
biomarkers of outcome after chemoradiation. Moreover,
our studies also confirmed that archival formalin-fixed
paraffin-embedded (FFPE) specimens are indeed suitable
for targeted NGS although in series older than 8–10
years a considerable portion of samples (up to 30 %)
might fail due to the high extent of DNA fragmentation
(IT, ms in preparation, July 2015).
NGS is also increasingly being used for the dissection

of the mechanisms involved in treatment-induced clonal
selection in the course of acquired treatment resistance.
To our knowledge, only one study so far has addressed
this question in a model of radioresistance [49]. In this
study, DNA-targeted sequencing was performed on pre-
and post-treatment tumor tissues from rectal cancer
patients who failed to respond to neoadjuvant chemo-
radiation. Mutant variants previously associated with
radioresistance including TP53 were detected in post-
treatment residual tumor tissue from non-responders.
In line with an important role of TP53 mutation in
radioresistance, an increase in allele frequency of aber-
rant TP53 variants as well as an increase in mutant p53
expression levels was observed in all cases in which the
tumor harbored a hotspot missense mutation in the
DNA-binding domain of p53. These data strongly sug-
gest that chemoradiation exerts a selection pressure
that leads to the increase in the relative portion of tumor
cells expressing mutant p53 protein [49]. Strategies of

downregulating mutant p53 [50] or refolding it into its
wild-type confirmation [51] might prove effective in sensi-
tizing tumor cells to chemoradiation in this scenario.
Another interesting approach with potential impact in

radiooncology which makes use of NGS represents a
novel method named XR-seq. This technique can be ap-
plied for genome-wide mapping of DNA excision repair
[52]. The underlying principle is that human nucleotide
excision repair generates two incisions surrounding the
site of damage, creating fragments of approximately 30
nucleotides. In XR-seq, these fragments are enriched by
immunoprecipitation of specific repair proteins which are
tightly bound to the excised DNA fragments. By subject-
ing this fragment library to NGS maps of global and
transcription-coupled DNA repair can be generated. This
novel method will allow uncovering repair characteristics
and sequence preferences of treatment-induced DNA
damage and as such might facilitate studies of the effects
of mutational patterns on transcriptional activity on DNA
repair in human tumor cells. This method should also
prove useful in determining the effects of drugs like
histone-modifying therapeutics or poly ADP ribose poly-
merase (PARP) inhibitors on nucleotide excision repair,
and how they eventually interfere with radio- or chemo-
sensitivity of tumor cells.
The immunomodulatory effects of radiation have

been widely documented (for review see Burnette &
Weichselbaum [53]) and immunogenic cell death was
identified as key component not only of targeted ther-
apies but also conventional treatment modalities in-
cluding radiation [54]. It could thus be speculated that
radiation of tumors with large numbers of genetic alter-
ations, with a portion of them serving as putative neo-
antigens, is more likely to induce anti-tumor immunity
compared to radiation of tumors with low number of
alterations. In support of this assumption, the total
number of immunogenic mutations per se (identified
by WES) was positively correlated with overall survival
of cancer patients treated with standard regimens [55].
Combining radiation and immune checkpoint blockade
which already demonstrated synergistic anti-tumor re-
sponses in animal models [56] are promising strategies
which are based on the above-mentioned principles. In-
tegration of NGS-based mutational profiling in upcom-
ing clinical trials of such combinatory treatment are
anticipated and will determine the predictive value of
the mutational load and/or the number of immuno-
genic mutations in this setting.

Intertumoral and intratumoral genomic
heterogeneity: a real challenge for personalized
medicine
As stated above, the technological advances coming along
with NGS have permitted rapid analysis of individual
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cancer genomes at high resolution on single-nucleotide
level. By this technical advancement, an astonishing het-
erogeneity between individual tumors has been revealed,
with only a limited number of somatic alterations shared
between tumors of the same histopathologic subtype. This
large genetic heterogeneity can be illustrated in the model
of HNSCC. Cases in this disease entity with a history of
heavy smoking and alcohol consumption belong to the
group of highly genetically instable tumors [57], most
likely resulting from the extensive DNA damage that has
been caused by tobacco carcinogen exposure for years. As
of December 2014, preprocessed and preanalysed muta-
tional data from 3 independent whole exome NGS studies
in HNSCC [58–60] in total reporting on 412 HNSCC cases
were available at cbioportal (http://www.cbioportal.org).
We used these data which have been filtered using tissue-
matched control sequences to exclude germ-line variants
for a more detailed assessment of the extent of genetic het-
erogeneity in HNSCC. Overall, somatic non-synonymous
mutations were detected in 15,293 genes. However, only
357 (2.3 %) of these genes were altered by mutation in >3 %
of the tumors. In 127 (36 %) of the more frequently affected
genes the mutation occurred within hotspot regions but for
only 75 genes (15 %) the same base position was involved
in more than one tumors. This means that recurrent muta-
tions at hotspot regions were detected in only 0.5 % of all
genes altered by mutations (Fig. 1). Alternatively, when the
non-synonymous mutations were filtered using the
MutSigv2.0 algorithm according to the background
mutational rate per gene rather than their prevalence
in HNSCC, only 51 genes (0.3 % of all affected genes)
were identified as significantly mutated genes.
A second example for tumors of very high genetic het-

erogeneity is cutaneous melanoma [4]. In a landmark
WES study on paired tumor and normal genomic DNA
from 135 patients with melanoma an overall number of
86,813 coding mutations were detected at a 2:1 ratio of

non-synonymous to synonymous events, suggestive for a
high passenger mutation load [61]. Filtering against the
basal mutation rates using MutSig [31] produced a list
of 544 significantly mutated genes. By refining the algo-
rithm to select for non-synonymous mutations of pre-
dicted functional consequence the authors reduced the list
of candidate drivers to eleven genes harboring significant
functional mutation burden. Interestingly, these genes in-
cluded six well-known cancer genes (BRAF, NRAS, PTEN,
TP53, CDKN2A, MAP2K1) and five new candidates
(PPP6C, RAC1, SNX31, TACC1, and STK19) [61].
The huge genetic heterogeneity in these types of can-

cer underlines the need for advanced bioinformatics
models for data analysis. It also impressively illustrates
the need of identifying key oncogenic driver pathways
rather than individual genes as targets of precision medi-
cine. This assumption is also supported by the observa-
tion that many low-frequency mutations in breast and
colorectal tumors, each of them having small effects on
cell survival [62]. It is thus rather unlikely that genome
sequencing will uncover a single target as the “Achilles
heel” of a tumor.
Exacerbating the complexity of the genetic landscape

of tumors, intratumoral heterogeneity in terms of spatial
and temporal differences in the mutational patterns of
key driver genes has recently been demonstrated for
renal [63, 64], lung [65], colorectal [66, 67] and breast
cancer [68]. Beyond etiologic, microenvironmental and
tumor-specific factors which all might contribute to such
genetic heterogeneity, therapy may act as further ex-
ogenous source of genome instability. Consistent with
this, in a recent study using the genetic model system
Caenorhabditis elegans cisplatin treatment has been
found to lead to a striking increase in base substitutions
as well as an elevated rate of larger structural alterations
[69]. Importantly, among the mutations found to be in-
duced by cisplatin in the human model some variants

97.7%

2.3%

genes affected by
mutations in >3% of cases

64%15%

21%

sporadic

Muts in hotspot regions
(non-recurrent base position)

only 0.5% of all non-synonymous mutations

Muts in hotspot regions
(recurrent base position)

genes affected
by mutations in 
3% of cases

Fig. 1 Genetic heterogeneity of squamous cell carcinomas of the head and neck region (HNSCC). The relative distribution of genes affected by
mutations is shown according to their mean prevalence within the three analyzed study cohorts (≤3 % vs. >3 % of cases) and their frequency of
occurrence at hotspot regions and/or recurrent base positions. The results shown here are based upon somatic mutation data generated by the
TCGA Research Network [60], Stransky et al. [59] and Agrawal et al. [58]
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have been linked to tumor progression and drug resist-
ance like activating HRAS mutations at codons 12 and
13 [70, 71]. Temozolomide which is broadly used as
radiosensitizer in brain tumors and sarcomas has been
found to leave an imprint in the cancer genome in the
form of an elevated rate of C > T transitions [57]. Con-
cerning potential mutagenicity of radiotherapy, TP53
[72] as well as c-MYC among others were identified as
radiosensitive gene loci [73].
In the light of accumulating evidence for high inter-

and intratumoral genomic heterogeneity the identifica-
tion of the relevant driver mutation(s) among passengers
in an individual cancer biopsy at a defined stage of dis-
ease represents a significant hurdle in the development
of NGS-based molecular diagnostics and personalized
treatment. One approach to overcome such hurdle
might represent deep sequencing of cell-free circulating
tumor DNA derived from blood plasma for personalized
cancer genomic profiling [20, 74–78], assuming that
genetic variants which are present in tumors only at
subclonal level (and which are probably not captured by
the diagnostic biopsy) are finally and inevitably released
by dying tumor cells to this common reservoir.

Future perspectives
Exciting new data from a continuously growing number
of NGS cancer studies nourish the hope that this tech-
nology will also significantly contribute to increasing our
understanding of the molecular mechanisms of radiore-
sistance. However, many more studies will certainly be
needed to determine the functional consequences of in-
dividual mutations or distinct mutational patterns for
cellular radiosensitivity and the individual tumor’s re-
sponse to radiotherapy. Proteomics is expected to pro-
vide additional important information that will guide
candidate drug selection and recent advances in prote-
omic techniques [79, 80] have opened new avenues for
optimized cancer treatment. The application of these
techniques will not only allow the monitoring of protein-
protein interactions, posttranslational modification and
drug-target engagement directly in cells or tissues but will
also represent a valuable tool for identifying off-target
drug effects [80]. The latter feature will certainly also
foster attempts to develop less toxic protocols of radio-
therapy combined with molecularly targeted radiosensi-
tizing agents.
The future of personalized radiation therapy will most

likely not only include DNA-based NGS. It will also
apply other high-throughput technologies such as RNA
sequencing that in parallel provides quantitative gene ex-
pression as well as mutational status. Overall, it can be
reasoned that integration of mutational patterns from
NGS analysis and other omics data together with func-
tional measures of cellular radiosensitivity in systems

biology models will strongly improve the power of out-
come prediction and optimize current treatment selection
algorithms for individual patients.
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