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Abstract 

Purpose: To assess the effects of daily adaptive MR‑guided replanning in stereotactic body radiation therapy (SBRT) 
of liver metastases based on a patient individual longitudinal dosimetric analysis.

Methods: Fifteen patients assigned to SBRT for oligometastatic liver metastases underwent daily MR‑guided target 
localization and on‑table treatment plan re‑optimization. Gross tumor volume (GTV) and organs at risk (OARs) were 
adapted to the anatomy‑of‑the‑day. A reoptimized plan (RP) and a rigidly shifted baseline plan (sBP) without re‑opti‑
mization were generated for each fraction. After extraction of DVH parameters for GTV, planning target volume (PTV), 
and OARs (stomach, duodenum, bowel, liver, heart) plans were compared on a per‑patient basis.

Results: Median pre‑treatment GTV and PTV were 14.9 cc (interquartile range (IQR): 7.7–32.9) and 62.7 cc (IQR: 
42.4–105.5) respectively. SBRT with RP improved PTV coverage (V100%) for 47/75 of the fractions and reduced doses 
to the most proximal OARs (D1cc, Dmean) in 33/75 fractions compared to sBP. RP significantly improved PTV cover‑
age (V100%) for metastases within close proximity to an OAR by 4.0% (≤ 0.2 cm distance from the edge of the PTV to 
the edge of the OAR; n = 7; p = 0.01), but only by 0.2% for metastases farther away from OAR (> 2 cm distance; n = 7; 
p = 0.37). No acute grade 3 treatment‑related toxicities were observed.

Conclusions: MR‑guided online replanning SBRT improved target coverage and OAR sparing for liver metastases 
with a distance from the edge of the PTV to the nearest luminal OAR < 2 cm. Only marginal improvements in target 
coverage were observed for target distant to critical OARs, indicating that these patients do not benefit from daily 
adaptive replanning.
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Introduction
The implementation of stereotactic body radiation 
therapy (SBRT) was an important milestone in local 
treatment for oligometastatic and medically inoper-
able cancers [1, 2]. High rates of local control in vari-
ous disease sites including hepatic metastases have been 

observed, as long as high biologically effective (BED) 
doses could be delivered [3–5].

SBRT requires maximum accuracy in treatment deliv-
ery to ensure that the high irradiation doses are precisely 
administered to the target structures while simultane-
ously sparing surrounding normal tissues. Especially 
when treating abdominal malignancies, such as liver 
metastases, the dose of SBRT is often limited by the 
proximity of gastrointestinal organs [6, 7] and PTV com-
promises are necessary to minimize the risk of radiation-
induced gastrointestinal toxicity. This may translate in 
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reduced local control if a minimum BED of 100 Gy can-
not be achieved [8–10]. Both intra-fraction respiratory 
motion and physiologic organ alterations have been iden-
tified as critical factors influencing treatment accuracy 
[11, 12].

Cone-beam based image-guided radiation therapy 
(IGRT) strategies have substantially improved the accu-
racy of SBRT in liver SBRT [10]. However, low soft tissue 
contrast combined with slow image acquisition relative to 
breathing motion do not allow accurate visualization of 
the hepatic metastases themselves and upper abdominal 
organs at risk. Therefore, stereotactic MR-guided online 
adaptive radiation therapy (SMART) has been suggested 
to overcome the limitations of low soft-tissue contrast 
IGRT by combining daily MR based treatment adapta-
tion and replanning with MR based target localization 
and continuous real-time tracking of the moving target.

The feasibility of SMART was shown in a prospec-
tive trial demonstrating improved PTV coverage and/or 
simultaneous organs at risk (OARs) sparing for abdomi-
nal malignancies [13]. While the advantage of MR-guided 
imaging and gating has been well established, the ben-
efit of daily on-table adaptive replanning, a time- and 
resource-intense process, for different locations of 
hepatic metastases remains uncertain.

The aim of this study therefore was to quantify a dosi-
metric benefit of online replanning on top of MR-guided 
setup correction and gating for liver metastases and 
derive recommendations when a SMART approach is 
mandatory or can be safely omitted.

Methods.

Patient characteristics
All patients treated with magnetic resonance image 
guided radiation therapy (MRgRT) for liver metastases 
at the Radiation Oncology Department of the Univer-
sity Hospital Zurich between 04/2019 and 04/2020 were 
identified from our institutional SBRT database (Table 1). 
A total of 15 patients with oligometastatic liver metas-
tases were identified that underwent MR-guided SBRT/
SMART. Patient characteristics are summarized in 
Table  1. Two patients had received prior liver SBRT on 
a C-arm Linac. One patient presented with a local recur-
rence at a previously irradiated location, while the other 
patient presented with a newly developed hepatic metas-
tasis. Median follow-up was 8 months (range 3–14). The 
fractionation scheme used was based on the treating 
physician’s decision, with the most common fractiona-
tion scheme used being 5 × 9  Gy to the    65% isodose 
(10/15 patients; Table 2).  This analysis was approved by 
the cantonal ethics committee Zurich (BASEC-Nr. 2018-
01794) and conducted in accordance with the ethical 
standards of the 1964 Declaration of Helsinki and its later 

amendments [14]. All patients gave their consent for ret-
rospective data analysis.

Simulation and initial treatment planning
Before undergoing MRI simulation, all patients were 
thoroughly checked for eligibility, including their abil-
ity to perform a 30-second expiration breath-hold. MR 
simulation was performed on the MRIdian system (Vie-
wRay, Sunnyvale, CA) with testing of gross tumor volume 
(GTV) tracking in sagittal cine MR-imaging. Patients 
then underwent a 3D inspiratory-breath hold planning 

Table 1 Patient characteristics

All patients (n = 15)

Sex

 Male 12

 Female 3

Age at time of SABR, median (range) 46 (32–63)

Performance status (ECOG) 0 (0–1)

Previous liver irradiation 2

GTV mean, SD [cc] 29.4 ± 33.1

PTV mean, SD [cc] 92.1 ± 77.5

Primary tumor

 Gastrointestinal 9

 Breast 2

 Melanoma 2

 NSCLC 1

 Bladder 1

Table 2 Distance to the closest organ at risk and prescription 
dose for each patient

Patient Organ Distance (edge PTV 
to OAR)

Prescription dose

A Heart 0.1 cm 5 × 9 Gy @ 65%

B Heart 0.2 cm 5 × 9 Gy @ 65%

C Heart 0.6 cm 5 × 9 Gy @ 65%

D Bowel Overlap 5 × 5 Gy @ 65%

E Bowel 2.5 cm 4 × 9 Gy @ 65%

F Heart 4.5 cm 5 × 9 Gy @ 65%

G Stomach 3.0 cm 5 × 9 Gy @ 65%

H Heart Overlap 5 × 9 Gy @ 65%

I Heart 0.2 cm 5 × 8 Gy @ 65%

J Heart 7.0 cm 5 × 9 Gy @ 65%

K Bowel 8.0 cm 6 × 5 Gy @ 80%

L Bowel Overlap 5 × 9 Gy @ 65%

M Bowel 3.0 cm 5 × 7 Gy @ 80%

N Stomach Overlap 5 × 6 Gy @ 65%

O Heart 4.0 cm 5 × 9 Gy @ 65 %
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CT scan with intravenous contrast agent, which was 
deformably registered to the 3DMR scan to obtain elec-
tron density data. GTV and OARs were manually delin-
eated by the treating physician. A clinical target volume 
(CTV) was created by expanding the GTV by an iso-
tropic margin of 0.5 cm and cropping at the boundary of 
the liver. Planning target volume (PTV) was generated 
by an isotropic 0.5  cm expansion of the CTV. A Monte 
Carlo algorithm based, intensity-modulated RT (IMRT) 
step and shoot treatment plan, referred to as “base-
line plan (BP)” was calculated, using a grid spacing of 
0.2 cm. The IMRT plans included 9 to 11 beams, avoiding 
entrance dose in the contralateral side. Ring structures 
around the PTV were created to optimize conformity. A 
planning objective limiting the D0.1 cc of the PTV to be 
at maximum 156% of the dose prescribed was given (e.g. 
70.2 Gy for the most commonly used 45 Gy). The plan-
ning objectives for the GTV were V95% ≥ 135% of the 
dose prescribed and D0.1 cc ≥  152%. For bowel, stomach 
and duodenum, in-house dose-volume constraints were 
enforced (D1cc < 26 Gy in 5 fractions). If necessary, PTV 
coverage was compromised to fulfill these constraints. In 
this case, a compromised PTV (CTV) was created with 
a pullback of 0.3  cm (0.6  cm) from the OAR. The pre-
scribed dose was delivered to the compromised PTV 
(CTV) and a dose below the OAR constraint was deliv-
ered to the remaining PTV. All plans were normalized to 
achieve V100% of the PTV (or the compromised PTV) 
greater or equal to 95%. No dose constraint was enforced 

for the heart. If all the constraints were respected without 
any PTV compromise, no further reduction of the OAR 
dose was attempted, but rather an increase of the plan 
conformity by minimizing the dose to the ring structures.

Online plan reoptimization and treatment delivery
The employed comprehensive SMART analysis work-
flow consisting of the computed tomography (CT) and 
MRI simulation, daily MR-guided adaptive replanning 
(MRgRT) including weight or full optimization, and 
subsequent analysis is illustrated in Fig. 1. Details of the 
SMART workflow [15] and the dose-volume histogram 
(DVH) analysis have been published previously [12].

Patients underwent daily MR-guided set-up and on-
table treatment plan re-optimization for each fraction 
(n = 75). The GTV as well as the OARs were recon-
toured and adapted to the anatomy-of-the-day within 
the volume of 2 cm isotropic expansion of the PTV. In a 
first step, we performed a weight optimization for each 
patient, which consists in keeping the MLC leafs in the 
same positions as the baseline plan and reoptimizing 
the monitor units delivered by each segment. If the PTV 
coverage was the same or better compared to the origi-
nal plan and the OARs constraints were all respected, the 
weight-optimized plan was delivered for this fraction. If 
not, a full plan optimization was performed, i.e. the MLC 
leaves positions were optimized based on the adapted 
structures. Based on the physician decision, one of the 
two was delivered as the reoptimized plan of the day 

Fig. 1 Comprehensive SMART analysis workflow consisting of the simulation and treatment planning, daily adaptive MRgRT workflow and 
retrospective analysis steps for DVH generation based on the anatomy‑of‑the day
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(RP). Gated expiration breath-hold treatment delivery 
was performed under continuous sagittal MR guidance.

Treatment plans
Multiple plans were calculated for each patient in the 
clinical routine and for this planning study: The BP was 
prepared on the simulation scans, approved by the treat-
ing physician, never delivered but used as a starting 
point for the daily adaptations and creation of the RP as 
described in the previous subsection. For this retrospec-
tive data analysis, the BP was also copied on the daily 
anatomies, rigidly shifted to achieve optimal target cov-
erage and recalculated obtaining the shifted baseline plan 
(sBP). In the data analysis we compared the BP, sBP and 
RP to quantify the benefit of the reoptimization.

Analysis of treatment plans
For detailed DVH analysis, all OAR were fully contoured 
in every individual MR scan used for treatment delivery. 
All reference plans and clinically delivered reoptimized 
plans were exported from the Viewray system (Oakwood 
Village, OH, USA) and imported into Eclipse Treatment 
Planning System (version 13.0, Varian Medical Systems, 
Palo Alto, CA, USA). DVH parameters were evaluated 
for GTV, PTV (V100%, D95%), and OARs (Dmax; D1cc). 
The dose was evaluated on the daily MR image, while 
no renormalization was performed. The detailed python 
notebook including all steps of analysis, data and plots is 
available under https:// github. com/ rmnld wg/ liver- smart.

Statistical analysis
Shapiro-Wilk test was computed to ensure the assump-
tion of normality was not violated in the data. Statistical 
analysis of dosimetric parameters was performed using 
an unpaired t-test for comparing the ≤ 0.2  cm versus 
the > 2  cm groups, while a paired t-test was employed 
to compare sBP to RP for each patient (GraphPad Prism 
version 7.00 for MAC, GraphPad Software, La Jolla Cali-
fornia USA). A p value below 0.05 was considered to be 
statistically significant.

Results
Treatment planning and adaptation
In total, 75 fractions were delivered. Full optimization 
was performed for 51 fractions. For the remaining 24 
fractions, no full optimization was performed, and only 
weight-optimized plans were delivered. A full optimiza-
tion for each fraction was carried out in 6 patients and at 
least one full optimization over the course of therapy was 
performed in 13 out of 15 patients.

Interfractional changes in tumor volumes
Median pre-treatment GTV volume was 14.9  cc (inter-
quartile range (IQR): 7.7–32.9) and PTV volume was 
62.7  cc (IQR: 42.4–105.5). Median GTV and PTV 
changes compared to baseline were 0 cc (IQR: − 0.6 to 0) 
and 0.4  cc (IQR: 0–2.5) respectively. The volume of the 
GTV was not adjusted from the baseline plan in 34% of 
all fractions. Detailed data of adaptive volume changes 
are shown in the Additional file 1.

Impact of plan adaptation
Mean conformity index was 1.14 for RP and 1.12 for sBP 
(range 0.95–1.24 vs. 0.94–1.29). Mean dose in 700  cc 
of the liver was also similar for RP and sBP (9.25 Gy vs. 
9.24 Gy).

Compared to the sBP, RP showed improved PTV 
V100% and V95% coverage in 47 (63%) and 45 (60%) 
of the applied fractions, respectively (Figs.  2, 3). RP 
improved CTV V100% and GTV V100% for 18 (24%) 
and 8 fractions (11%) respectively when compared to sBP. 
Treatment adaptation significantly improved PTV V100% 
coverage for metastases located within close proximity 
of an OAR (≤ 0.2 cm distance from the edge of the PTV 
to the edge of the OAR; n = 7; p = 0.01) by 4.0 % (Fig. 4). 
For metastases distant from an OAR (> 2 cm; n = 7) PTV 
V100% coverage was not significantly improved (0.2% 
higher; p = 0.37).

Patients with OAR in close proximity were A–D, H, I, 
N and L. The benefit regarding ΔPTV  V100% for patients 
A–D, H, I and N is clearly visible. For patient L, ΔPTV 
V100% was only 0.2% higher. Nonetheless, this patient 
benefited from a daily online RP by a reduced total bowel 
dose of 4.9 Gy (sBP: 32.0 Gy vs. RP: 27.1 Gy).

RP achieved lower or maintained equal doses (for both 
D1cc and Dmean) in the nearest OAR in 39 of the applied 
75 fractions (Fig. 2). The distance to the closest OAR for 
each patient is shown in Table 2.

This dosimetric effect of online replanning is illus-
trated in Fig. 3 showing the DVH and dose distribution 
for patient A for the BP and the first treatment fraction 
for the sBP and the RP. While the BP was of good qual-
ity (3a), the sBP was degraded as a rigid shift could not 
account for the altered OAR (heart) location (3b), result-
ing in higher cardiac dose and a decreased PTV cover-
age (Fig. 2). This could be solved generating a RP by a full 
reoptimization of the BP (3c).

Local tumor control and toxicity
One patient, who suffered from a local relapse 7 months 
after treatment, was successfully treated with salvage 
SMART (5 × 7  Gy to the 65% isodose; salvage treat-
ment not included in the present analysis). A diminished 

https://github.com/rmnldwg/liver-smart
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appetite grade I (CTCAE Version 5.0) was reported for 
1 patient, while 2 patients indicated fatigue grade I. Pro-
phylactic antiemetic medication was prescribed for 5 out 
of 15 patients. Three patients reported a temporary nau-
sea grade I-II. No grade 3 treatment-related acute toxici-
ties were observed.

With the limited median follow-up of 14 months (range 
3–9 months), no late toxicities were observed.

Discussion
While previous studies have shown a benefit of MR-based 
image guidance and gating for pulmonary and abdomi-
nal malignancies [13, 16–18], it is still an open question 
whether daily treatment plan adaptation and reoptimiza-
tion is truly beneficial for all patients. As online treatment 
reoptimization not only entails time burden for the radia-
tion oncologist, physicist, and therapist, but also prolongs 
patient-on-table time by around 30 min, a prediction of 
whether a particular patient might profit from daily on-
table adaptive replanning instead of delivering the shifted 

baseline plan could significantly impact MRgRT pro-
cesses. We therefore investigated whether and in which 
patients SMART may provide a dosimetric benefit by 
comprehensive DVH analysis of baseline treatment plans 
after rigid setup correction without re-optimization ver-
sus daily adapted plans—overlaid on the anatomy-of-the-
day—on a per patient basis.

The present analysis showed that daily on-table 
adaptive replanning in patients with liver metastases 
improved PTV coverage in 63% of the applied fractions 
compared to a rigid shift. Previous studies have reported 
similar findings for patients with abdominal malignan-
cies, where daily on-table adaptive replanning MRgRT 
increased PTV coverage in approximately 66% of all 
fractions [13, 18]. For pulmonary malignancies, adaptive 
treatment has been reported to improve PTV coverage 
in 61% of fractions [16]. These previous studies did, how-
ever, not analyze if daily on-table adaptive replanning is 
necessary in all patients or can safely be omitted in a spe-
cific cohort.

Fig. 2 a, b PTV coverage (V100 %) for each patient comparing baseline plans (BP), rigidly shifted baseline plans (sBP), and reoptimized treatment 
plans (RP), averaged over all fractions (a) and for each individual fraction (b). c, d D1cc in Gy for the OAR receiving the highest dose (indicated for 
each patient), averaged over all fractions (c) and for each individual fraction (d). The distance to OARs is shown in Table 2
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The benefit of treatment adaptation on PTV coverage 
was higher for patients with a metastasis in close proxim-
ity to an OAR compared to patients, where the GTV was 
at a large distance to the OARs [in Fig. 4]. The increased 
benefit for patients with a metastasis in close proximity 

to an OAR may be caused by daily positional changes of 
OAR, such as bowel filling and movement, by daily set-up 
changes. With a limited number of data points between 
0.2 and 2 cm distance of OAR to PTV, the present rec-
ommendation for daily adaptive re-planning for a patient 

Fig. 3 Illustration of the benefit of reoptimization for patient A: (TOP) DVH comparison of baseline, rigidly shifted, and reoptimized plan; a Dose 
distribution of the baseline plan overlayed on the pre‑treatment MR; b rigidly shifted plan overlayed on the MR of the first treatment fraction; c 
reoptimized plan for the first treatment fraction. Doses exceeding 45 Gy are shown. The contours displayed are the PTV (red) and the heart (rose)

Fig. 4  a Benefit of reoptimization, measured as improvement in ∆V100% as a function of the distance to the closest OAR; b Location of metastasis 
in liver. Patients with a benefit of adaptation of ∆V100% > 1% are highlighted in cyan
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cohort with a distance of < 2 cm of the PTV to the OAR 
may well be too conservative but seems reasonable and 
feasible.

As the observed median differences for GTV and PTV 
volumes after plan adaptation in comparison to the BP 
were 0.0 cc and 0.4 cc respectively, these can be regarded 
as negligible. These slight variations in PTV volume were 
most probably caused by anatomical alterations leading 
to an altered CTV volume and/or inter-observer variabil-
ity. As the Viewray planning software does not include 
the possibility to rotate a contoured structure in case of 
patient rotations, recontouring in some slices may also 
lead to slight alterations. The volume of the GTV did not 
change from the BP to the RP in 26/75 (34%) of all frac-
tions. Only 7 of these 26 fractions (27%) corresponded 
to situations where the PTV was more than 2  cm away 
from the OAR. This indicates that GTV recontouring 
was not dependent on its proximity to the OAR. While 
PTV size did not change much between fractions (all vol-
umes shown in Additional file 1), its geometry may still 
undergo alteration as e.g. shown in Fig.  3. These altera-
tions may be strongly influenced by the OAR in close 
proximity. This is a possible explanation as to why the 
PTV coverage is significantly improved by MR-guided 
online replanning on top of MR-guided setup correction 
for liver metastases in close proximity to an OAR.

While improving PTV coverage, online adaptation 
furthermore achieved lower or maintained equal doses 
in OARs (D1cc and Dmean) for 54% of the applied frac-
tions. Henke et  al. reported that daily adaption could 
allow OAR violations to be successfully reversed in all 
plans, naming the primary purpose of adaption revers-
ing OAR constraint violation in 75% of cases [13]. The 
constraints of the trial by Henke et al. were, however, less 
conservative than the ones employed in the present study 
and this could explain the observed difference.

The present analysis is limited by its small sample size 
and use of different fractionation schemes. Intra-fraction 
motion could lead to altered OAR and GTV doses. In such 
cases, a post-treatment scan may add additional informa-
tion concerning the dose distribution. While continuous 
sagittal cine MR-imaging and tracking of the GTV was 
performed in the present study, future investigations may 
benefit from additional post-treatment imaging. While the 
required time for online adaptation exceeds durations for 
typical SBRT fractions, it corresponds to procedures such 
as robotic SBRT or brachytherapy [19, 20]. With the advent 
of technical advancements, such as automated adaption, 
future treatment times for SMART could even be reduced 
considerably [21]. Therefore, this study results may not be 
as relevant in the future as now, when treatment times will 
be significantly reduced. However, currently every effort to 

reduce slot time is relevant to provide sufficient machine 
time to treat all patients suitable for MRgRT.

Conclusions
MR-guided online replanning SBRT on top of MR-guided 
setup correction and gating of liver metastases resulted in 
improved target coverage and OAR sparing for liver metas-
tases with a distance of < 0.2 cm from the edge of the PTV 
to the nearest luminal OAR. Only marginal improvements 
in target coverage were observed for target distant to criti-
cal OARs, indicating that these patients do not benefit 
from daily adaptive replanning.
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