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Abstract 

Background: Patient-specific dose prediction improves the efficiency and quality of radiation treatment planning 
and reduces the time required to find the optimal plan. In this study, a patient-specific dose prediction model was 
developed for a left-sided breast clinical case using deep learning, and its performance was compared with that of 
conventional knowledge-based planning using RapidPlan™.

Methods: Patient-specific dose prediction was performed using a contour image of the planning target volume 
(PTV) and organs at risk (OARs) with a U-net-based modified dose prediction neural network. A database of 50 
volumetric modulated arc therapy (VMAT) plans for left-sided breast cancer patients was utilized to produce training 
and validation datasets. The dose prediction deep neural network (DpNet) feature weights of the previously learned 
convolution layers were applied to the test on a cohort of 10 test sets. With the same patient data set, dose prediction 
was performed for the 10 test sets after training in RapidPlan. The 3D dose distribution, absolute dose difference error, 
dose-volume histogram, 2D gamma index, and iso-dose dice similarity coefficient were used for quantitative evalua-
tion of the dose prediction.

Results: The mean absolute error (MAE) and one standard deviation (SD) between the clinical and deep learning 
dose prediction models were 0.02 ± 0.04%, 0.01 ± 0.83%, 0.16 ± 0.82%, 0.52 ± 0.97, − 0.88 ± 1.83%, − 1.16 ± 2.58%, 
and − 0.97 ± 1.73% for  D95%,  Dmean in the PTV, and the OARs of the body, left breast, heart, left lung, and right lung, 
respectively, and those measured between the clinical and RapidPlan dose prediction models were 0.02 ± 0.14%, 
0.87 ± 0.63%, − 0.29 ± 0.98%, 1.30 ± 0.86%, − 0.32 ± 1.10%, 0.12 ± 2.13%, and − 1.74 ± 1.79, respectively.

Conclusions: In this study, a deep learning method for dose prediction was developed and was demonstrated to 
accurately predict patient-specific doses for left-sided breast cancer. Using the deep learning framework, the effi-
ciency and accuracy of the dose prediction were compared to those of RapidPlan. The doses predicted by deep learn-
ing were superior to the results of the RapidPlan-generated VMAT plan.

Keywords: Deep learning, Dose prediction, Volumetric modulated arc therapy (VMAT), Knowledge-based planning 
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Background
As radiation therapy treatment technology is advanc-
ing, the treatment outcomes of cancer patients are 
gradually improving. Recently, advanced treatment 
modalities, such as intensity modulation radiation ther-
apy (IMRT) and volumetric arc therapy (VMAT), have 
been applied to deliver higher doses to tumor areas, 
while reducing the therapeutic doses to normal organs 
compared to conventional 3D conformal radiation ther-
apy. However, the ability of these advanced treatment 
methods to produce an optimal plan varies according 
to the experience of the planner, and a planning time-
consuming task must be repeated until the treatment 
goal is reached. Therefore, studies [1–6] have been 
conducted to improve treatment planning efficiency 
and quality, while reducing planning time and effort by 
using knowledge-based techniques for dose prediction 
in radiotherapy.

Currently, commercial software is available in the form 
of RapidPlan (version 13.6, Varian Oncology Systems, 
Palo Alto, CA, USA) [7–9]. A knowledge-based plan-
ning (KBP) model is generated using a previous, clinically 
approved treatment plan data-based regression analysis 
as the dose-volume histogram (DVH) estimation algo-
rithm of RapidPlan. For a new patient, the most similar 
treatment plan is provided within the estimated DVH 
model.

However, dose prediction using the KBP model has 
two limitations. First, it is difficult to include all charac-
teristics of the inherent organ structure depending on 
the patient. Second, the DVH does not reflect the spatial 
dose distribution. It is possible to derive an unacceptable 
plan according to the dose distribution around an impor-
tant organ at risk (OAR). If patient-specific dose predic-
tion were possible while compensating for the limitations 
of the KBP model, the workload in clinical practice would 
be reduced.

Deep learning methods have proven to be effective in 
various fields, such as automatic segmentation [10–12], 
image registration [13–15], respiratory motion predic-
tion [16–18], and toxicity prediction [19–21]. Studies 
on dose prediction using deep learning have also been 
reported.

Deep learning methods based on dose prediction of 
IMRT plans have been utilized for head and neck [22, 23], 

rectal [24], prostate [25, 26], and lung [27] cancer cases. 
In addition, dose prediction using VMAT plans has been 
performed for head and neck [28], rectal [29], and pros-
tate [30] cancer. There have also been other treatment 
techniques such as 3D dose prediction for head and neck 
cancer treatment using helical tomotherapy [31].

In those studies, evaluation of the test cases was con-
ducted after learning a deep neural network using 2D or 
3D computed tomography (CT) images and patient ana-
tomical information. However, when evaluating the accu-
racies of the deep learning models, comparisons were not 
made under the conditions used in the commercial mod-
els; rather, only the DVH, mean dose, maximum dose, 
and gamma index [32] were employed for quantitative 
evaluation of the clinically accepted plan.

In this study, the doses predicted by developed deep 
learning model using only the anatomy information of 
left-sided breast cancer patients treated with VMAT 
were compared with the results predicted using Rapid-
Plan under the same clinically acceptable conditions.

Methods
Patients and treatment planning
Fifty-five patients with left-sided breast cancer diagnosed 
at the National Cancer Center in South Korea in 2018 
and 2019 were included in this study. The characteris-
tics of the patients are listed in Table 1. All patients were 
staged according to the American Joint Committee on 
Cancer (AJCC) staging system [33].

Manual planning and treatment were performed for all 
patients with two coplanar VMAT arcs with a prescrip-
tion of 4320 cGy in 16 fractions, a photon energy of 6 MV 
beam, gantry angles of 165°–290°, and collimator angles 
of 30° and 330°. The entire breast was included, while 
there was no nodal involvement.

All treatments were planned using the Varian Eclipse 
treatment planning system (version 13.6, Varian Oncol-
ogy Systems, Palo Alto, CA, USA) with the analytical ani-
sotropic algorithm (AAA). Table  2 shows the planning 
goals for the PTV, heart, left lung, right lung, and right 
breast.

The clinical treatment plan was optimized to ensure 
the following OAR constraints: no more than 5% of the 
heart received > 20 Gy (Volume 5 [%] ≤ 20 Gy); no more 
than 30% of the heart received > 10  Gy (Volume 30 

Table 1 Patient characteristics in this study

Patients Female Average age Average left breast 
volume  [cm3]

Stage

I II III IV N/X

Training set 45 51 438.15 35 6 - - 4

Testing set 10 56 491.51 7 3 - - -
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[%] ≤ 10 Gy); no more than 4 Gy of the heart mean dose 
received; no more than 15% of the lungs received > 20 Gy 
(Volume 15 [%] ≤ 20 Gy); no more than 35% of the lungs 
received > 10 Gy (Volume 35 [%] ≤ 10 Gy); no more than 
50% of the lungs received > 5 Gy (Volume 50 [%] ≤ 5 Gy); 
no more than 5 Gy of the right breast max dose received. 
All the clinical confirmation plans were normalized such 
that 95% of the PTV received 100% of the prescription 
dose. For each plan, the contours of the PTV and OARs 
were determined by experienced physicians, and the dose 
distribution was confirmed by experienced physicians 

and physicists. The same datasets were used in the Rapid-
Plan method for comparison.

All CT images were acquired using General Elec-
tric Light Speed Radiotherapy System 4 (GE  Medical 
Systems, Milwaukee, WI). CT images with the follow-
ing dimensions were utilized for each axial slice: image 
matrix = 512 × 512, slice numbers = 76–106, pixel spac-
ing = 0.98 mm, and slice thickness = 3.75 mm. The study 
protocol conformed to the ethical guidelines of the Dec-
laration of Helsinki as revised in 1983 and was approved 
by the Institutional Review Board (IRB) of the National 
Cancer Center without an IRB number. All patient data 
were fully anonymized, and all methods were performed 
in accordance with the relevant guidelines and regula-
tions outlined by our institution.

Deep learning model for dose prediction
The network used was based on the open-source library 
Keras (version 2.2.4) [34] and the reference implemen-
tation of U-Net [35]. Figure  1 shows the dose predic-
tion deep neural network (DpNet) for dose prediction, 
which consists of a down-sampling (encoding) path and 
an up-sampling (decoding) path. For the encoding path, 
we used two 3 × 3 convolution layers, which had 64, 128, 
256, and 512 filters. Each of these layers was followed 
by a rectified linear unit (ReLu) [36] and a maximum 
pooling layer. On the decoding path, we used a 2 × 2 

Table 2 Left-sided breast cancer clinical treatment planning 
goals

*Volume [% of total volume]

Target and normal organ structure Planning goals

Planning target volume (PTV) Dose 95 [%] = 100

Dose [max] ≤ 49.68 Gy

Heart Dose [mean] ≤ 4 Gy

Volume 5 [%] ≤ 20 Gy

Volume 30 [%] ≤ 10 Gy

Lung (left, right) Volume 15 [%] ≤ 20 Gy

Volume 35 [%] ≤ 10 Gy

Volume 50 [%] ≤ 5 Gy

Right breast Dose [max] ≤ 5 Gy

Fig. 1 Schematic diagram of the U-net based dose prediction deep neural network (DpNet) architecture used for volumetric arc radiation therapy 
(VMAT) dose distribution prediction
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transposed convolution and two 3 × 3 convolution layers 
followed by a ReLu activation function. Concatenation 
was performed with the corresponding feature map from 
the skip connection path and two convolution layers with 
3 × 3 filters. To avoid overfitting during training, batch 
normalization [37] and dropout (the dropout rate was set 
to 0.2) [38] were added to the layers. In the final layer, we 
used a 1 × 1 convolution network with a sigmoid activa-
tion function. The mean squared error (MSE) loss func-
tion utilized in DpNet calculates the difference between 
the actual and predicted doses according to Eq. (1):

where n is the total number of training samples and p 
and c are the predicted and clinical doses, respectively. 
We used Adam [39] as an optimizer with a learning rate 
of 1.0E-04 and mini-batch size of 15 images. The experi-
ments were conducted on a computer workstation with 
an Intel i7 central processing unit with a 24  GB main 
memory and a computer unified device architecture 
library on a graphics processing unit (NVIDIA Titan-Xp 
with 12 GB of memory). Network training of the DpNet 
took approximately 48 h to run 5000 epochs on the train-
ing and validation datasets.

Dose prediction data preprocessing
The input of the dose prediction model was utilized 
for training and validation of the DpNet, including CT 
images as well as PTV, heart, left lung, right lung, and 
right breast contour images. Clinical plan datasets were 
obtained using Eclipse planning software (version 13.6, 
Varian Oncology Systems, Palo Alto, CA, USA). All CT 
images were converted into grayscale images, and the 
contouring points were converted into segmented con-
tour images in binary format, as depicted in Fig. 1 [12]. 
All training images were resized from the conventional 
size of 512 × 512 pixels to 256 × 256 pixels owing to 
graph card memory resource limitations and to reduce 
the DpNet training time.

Deep‑learning‑based dose prediction process
The deep learning dose prediction (Dp) model is a DpNet 
training of contours, a CT image as input data, and the 
training and validation sets consisted of 35 and 10 patient 
datasets, respectively. The 10 test sets used for model val-
idation were employed as independent, separate dataset 
images for DpNet, as shown in Fig. 2.

Five-fold cross-validation [40] was performed to 
improve the model accuracy because the training data-
set was insufficient. The five-fold average loss ± standard 

(1)MSE =
1

n

n
∑

i=1

(Di
p − Di

c)
2
,

deviation was 0.09 ± 0.01 (training loss) and 0.73 ± 0.07 
(validation loss). The third fold performed the best, with 
the lowest validation loss of 0.65. This model was used to 
evaluate the dose predictions for the test set of patients. 
To compare the results with the clinical dose distribu-
tion, the predicted dose of the test set was normalized to 
100% of the prescription dose in 95% of the PTV. For the 
dose prediction of the Dp model, the test process is car-
ried out with the patient CT as an input, and dose predic-
tion is performed not only on the PTV contour but also 
on the area that does not include the PTV contour as the 
entire area inside the body contour.

RapidPlan model for dose prediction
The RapidPlan dose prediction (Rp) model configuration 
consisted of two parts.

First, the geometric and dosimetric information of the 
patient was extracted from a group of selected available 
approved treatment plans (training and validation data-
sets), and an automated DVH estimation model was cre-
ated based on the extracted features.

Second, the lower boundary of the DVH estimation 
model parameter of the new patient (test dataset) was 
generated by predicting the DVH using the trained, opti-
mized model.

To compare and evaluate the performance of the Dp, 
the dose distribution was generated using RapidPlan with 
the same training, validation, and test datasets. AAA 
(version 13.6) was used as the dose calculation algorithm, 
and normal tissue objects were not used in the same way 
as in the clinical plan. All normalized dose distributions 
were the same as those in the clinical protocol of our 
institution, as mentioned above.

For PTV, the manual optimization objectives were 
applied in the same way as in the clinical plan; separately, 
the dose volume constraints were applied as OAR opti-
mization objectives to the line objectives generated from 
the predicted DVH. The Rp plan is a result of the opti-
mization process; thus, the similarity between the origi-
nal plan and the Rp plan depends on the similarity of the 
objective setting in the original plan and in the Rp plan 
creation.

Quantitative dose prediction evaluation
To evaluate quantitatively the accuracy of Dp and Rp, the 
3D dose distribution, the maximum and mean dose abso-
lute differences between the clinical and predicted doses 
in the OARs and PTV, the DVH, 2D gamma analysis, and 
the isodose volume dice similarity coefficient (iDSC) [31] 
were used.

First, the clinical and predicted dose volumes of the 
Dp and Rp models were compared with the 3D dose 
distribution.
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Second, in the indirect evaluation method, the absolute 
dose errors of the clinical and predicted doses were cal-
culated using the following equation:

Third, the clinical and predicted doses obtained using the 
DVH, the most commonly used treatment plan evalua-
tion tool, were compared.

Fourth, the gamma analysis metric, which is utilized 
in evaluating complex modulated radiotherapy, was cal-
culated by simultaneously considering the dose differ-
ence and distance to agreement. The clinical dose was 
compared with the 2D gamma index as a reference, and 
the 2D dose distribution corresponding to the trans-
verse plane was calculated. The gamma index passing 
criteria were 3%/3 mm and 2%/2 mm, and the calcula-
tion for the whole body was performed without a dose 

(2)PTV , OARs percentage of absolute error =

∣

∣

∣

∣

Clinical dose − Predicted dose(Dp, Rp)

Clinical dose

∣

∣

∣

∣

×100%.

threshold. In addition, areas outside the body were not 
included in the gamma index calculation.

Finally, the dice similarity coefficient of the isodose 

volume was evaluated in the 3D dose distribution. 
The iDSC method involves calculating the overlapping 
results of two different volumes according to the fol-
lowing equation:

where A is the clinical isodose volume and B is the pre-
dicted isodose volume (Dp and Rp). iDSC takes values 
between zero and one. When iDSC approaches zero, 
the clinical and prediction results differ significantly. 

(3)iDSC =
2|A ∩ B|

|A| + |B|
,

Fig. 2 Flowchart showing the deep learning dose prediction (Dp) and Rapid plan dose prediction (Rp) process.
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However, as iDSC approaches one, the two volumes 
exhibit increased similarities.

We used the Wilcoxon test to determine the statistical 
significance of the differences between the clinical Dp 
and Rp results.

Results
For quantitative evaluation, Figs.  3, 4 and 5 depict the 
relative dose differences for the test set between the clini-
cal dose and the Dp and Rp 3D dose distributions and 
the differences from the clinical dose histogram. The 

histogram distributions were compared; in cases 2, 4, and 
5 of the test set, the Dp dose showed less difference from 
the clinical dose than the Rp dose. In cases 1, 6, and 10 
of the test set, the Rp dose was more consistent with the 
clinical dose than the Dp dose, and there was no signifi-
cant difference in cases 7–9, as demonstrated in Fig. 5.

Tables  2 and 3 present the absolute maximum and 
mean dose errors and SDs of the PTV and organ struc-
tures of the test set. For the absolute maximum dose 
error, the average differences between the errors of 
the Dp and Rp are 1.28%, 0.90%, − 3.74%, − 4.24%, 

Fig. 3 An example of a left-sided breast cancer 3D-dose distribution illustrating the prediction accuracy, No.4 patient case. a–c Illustrate clinical 
(c), deep learning dose prediction (Dp), and Rapid plan dose prediction (Rp) relative dose distributions for each voxel, d relative dose difference 
between clinical and Dp, e relative dose difference between clinical and Rp

Fig. 4 An example of a left-sided breast cancer 3D-dose distribution illustrating the prediction accuracy, No.8 patient case. a–c illustrate clinical 
(c), deep learning dose prediction (Dp), and Rapid plan dose prediction (Rp) relative dose distributions for each voxel, d relative dose difference 
between clinical and Dp, e relative dose difference between clinical and Rp



Page 7 of 13Ahn et al. Radiat Oncol          (2021) 16:154  

and − 3.07% for the body, left breast, heart, left lung, and 
right lung, respectively, as shown in Table 3. For the abso-
lute mean dose error, the average differences between the 

Dp and Rp are –0.13%, –0.78%, 0.56%, 1.04%, and –0.77% 
for the body, left breast, heart, left lung, and right lung, 
respectively, as summarized in Table 3. In the PTV case, 
the differences in in  D95%,  D50%,  D2%, and  Dmean between 
the Dp and Rp models are less than 1%, although the dif-
ference in  Dmax is larger, as observed in Table 4.

The DVHs of two patients (Nos. 4 and 8) were com-
pared with the approved clinical results and are shown 

in Figs. 6 and 7. The Dp dose distribution results in the 
right lung are more consistent with the clinical results. 
Figures  8 and 9 present the 2D gamma analysis criteria 

of 2%/2 mm and 3%/3 mm with the Rp and Dp doses as 
references for the clinical dose. In Table 5, which summa-
rizes the average gamma analysis passing rates calculated 
from all slices of the 2D dose with clinical dose distribu-
tion, there is no significant difference in the Dp model 
criteria of 2%/2 mm, and the passing rate of 0.03 is high 
at 3%/3 mm. In particular, the standard deviation of the 

Fig. 5 The relative 3D-dose distribution difference compared clinically with the Dp and Rp is shown by histogram for the ten-test data set. a–j are 
test set cases of No. 1–10. Zero value of relative dose was not included in the histogram plot

Table 3 Comparative mean absolute error average (± SD) dosimetric results for OARs in 10 tested patients

Organ structure Dmean Dmax

C‑Dp (a) (%) C‑Rp (b) (%) p value ||a| − |b||(%) C‑Dp (a) (%) C‑Rp (b) (%) p value ||a| − |b||(%)

Body 0.16 ± 0.82 − 0.29 ± 0.98 0.01 − 0.13 2.21 ± 2.14 0.93 ± 1.77 0.01 1.28

Left breast 0.52 ± 0.97 1.30 ± 0.86 0.01 − 0.78 2.08 ± 2.13 1.18 ± 1.92 0.13 0.9

Heart − 0.88 ± 1.83 − 0.32 ± 1.10 0.20 0.56 − 1.79 ± 8.43 5.53 ± 4.97 0.01 − 3.74

Left lung − 1.16 ± 2.58 0.12 ± 2.13 0.05 1.04 0.67 ± 3.71 4.91 ± 2.80 0.01 − 4.24

Right lung − 0.97 ± 1.73 − 1.74 ± 1.79 0.25 − 0.77 − 6.73 ± 9.13 − 9.8 ± 10.03 0.16 − 3.07
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Rp model is approximately two times higher than that of 
the Dp model.

Figure 10 displays iDSC for 10 test datasets from 0 to 
100% of the isodose volume. The solid red line represents 
the average iDSC, which usually ranges from zero to one, 
with one indicating an ideal match. The Rp and Dp low 
isodose volumes (ranging from 3 to 20%) show a ten-
dency for iDSC to be less than 0.9. The Dp model always 
has iDSC > 0.9 at a high isodose volume (range from 90 
to 100%). However, the Rp model has cases in which the 
iDSC of the test set (Nos. 2, 9, and 10) is less than 0.9.

Table 4 Comparative mean absolute error average (± SD) 
dosimetric results for PTV in 10 tested patients

Dn% is means the dose received by n % of the PTV

Dosimetric index PTV
C‑Dp (a) (%) C‑Rp (b) (%) p value ||a|–|b|| (%)

D95% 0.02 ± 0.04 0.02 ± 0.04 – 0

D50% 0.86 ± 0.53 0.90 ± 0.72 0.75 − 0.04

D2% 1.01 ± 0.67 0.91 ± 0.53 0.50 0.1

Dmax 1.51 ± 2.68 0.58 ± 1.82 0.08 0.93

Dmean 0.01 ± 0.83 0.87 ± 0.63 0.01 − 0.86

Fig. 6 No.4 patient case, comparison of deep-learning, and rapid-plan dose-volume histogram, solid lines represent clinical DVH, and dashed lines 
represent predicted DVH, a compare DVH results of clinical and Dp, b compare DVH results of clinical and Rp

Fig. 7 No.8 patient case, comparison of deep-learning, and rapid-plan dose-volume histogram, solid lines represent clinical DVH, and dashed lines 
represent predicted DVH, a compare DVH results of clinical and Dp, b compare DVH results of clinical and Rp
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Fig. 8 2D gamma analysis results of No.4 patient case at isocenter position, a dose difference and distance to agreement passing criteria of 2 
%/2 mm Dp, b criteria of 3 %/3 mm Dp, d criteria of 2 %/2 mm Rp, e criteria of 3 %/3 mm Rp, c, f 3%/3mm gamma analysis results and contours 
overlapping images (the meaning of contour color, yellow: body, green: heart, blue: lungs, red: left breast, cyan: PTV)

Fig. 9 2D gamma analysis results of No.8 patient case at isocenter position, a dose difference and distance to agreement passing criteria of 2 %/2 
mm Dp, b criteria of 3 %/3 mm Dp, d criteria of 2 %/2 mm Rp, e criteria of 3 %/3 mm Rp, c and f 3%/3mm gamma analysis results and contours 
overlapping images (the meaning of contour color, yellow: body, green: heart, blue: lungs, red: left breast, cyan: PTV)
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Discussion
In this study, deep learning was utilized for VMAT dose 
distribution prediction using the anatomical features 
in the planning CT for left-sided breast cancer and the 
performance of this approach was compared with that of 
RapidPlan.

Our DpNet model consists of convolutional neural net-
work layers to output the dose distribution according to 
the input target, OAR contours, and anatomical informa-
tion (CT) (Fig.  1). Deep learning-based dose prediction 

studies have been reported on tumors centrally located in 
the body, such as rectal [24] and prostate [25, 26] cancer 
tumors. In the case of breast cancer, the target anatomi-
cal position is close to the body outside the area and the 
left lung, and the dose conformity is lower than that in 
the prostate case [41, 42]. The approach using deep learn-
ing to predict the clinically accepted dose distribution 
in the case of inhomogeneity around the target is differ-
ent from those utilized in previous studies [24–26]. In 
Table  6, Yoganathan and Zhang [43] predicted the dose 
distribution for left breast cancer and reported that the 
prediction  Dmean error (over entire CT volume) was 
0.9 ± 1.2  Gy with an atlas-based method. Bai et  al. [44] 
obtained 0.48 ± 2.27  Gy and 0.42 ± 1.82  Gy from dose 
prediction using the similarity selection method (SIM) 
based on the most similar atlas image and the weighted 
method (WEI_F) applying weighted dose distribution 
with database images.

Table 5 All of the slice 2-D gamma analysis average pass rate 
with 3%/3 mm and 2%/2 mm criteria for 10 test sets

Dosimetric 
index

2%/2 mm 3%/3 mm

Dp Rp Dp Rp

Ave 0.71 0.70 0.85 0.82

SD 0.06 0.12 0.04 0.10

Fig. 10 Iso-dose dice similarity coefficient (iDSC) between clinical and predicted isodose volumes (Dp and Rp) for ten test sets. a result of Rp iDSC, 
d result of Dp iDSC

Table 6 Summary of MADs presented in previous literature on left breast cancer

A: atlas-based dose prediction, D: deep learning-based dose prediction

Yogananthan et al. [40] Bai et al. [41] Our study

Training data set 19 20 50

Method A A (SIM) A (WEI_F) D (Dp) A (Rp)

MAD (Gy) over entire CT 
volume

0.9 ± 1.1 0.48 ± 2.27 0.42 ± 1.82 0.32 ± 0.07 0.35 ± 0.08
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The mean absolute differences (MADs) [43, 44] in the 
test set over the entire CT image according to the Dp and 
Rp models show small differences from the clinical plan 
dose, and the SD is also small, indicating consistent dose 
prediction.

As the patient datasets and breast cancer treatment 
protocols differ by institution, the ability to perform 
direct comparison is limited; however, evidence has 
shown that dose prediction using deep learning meth-
ods is possible. Tables  2–4 demonstrate that the Dp 
model obtained results superior to those of the Rp model 
because it differed less from the clinical plan. In particu-
lar, in Fig. 10, the Dp model shows iDSC < 0.9 only in the 
region of low iso-dose volumes (from 2 to 20%), but for 
the Rp model in cases Nos. 2, 9, and 10, the results are 
less than 0.9 at high iso-dose volumes (from 95 to 100%) 
as well as low iso-dose volumes.

The calculated iDSC was less than 0.9 at high iso-dose 
volumes because the process of obtaining the optimal 
treatment plan using the Rp model optimization process 
and the manual method are different [45].

If the plan created using the Rp model does not satisfy 
the clinical goal in terms of the DVH and dose distribu-
tion, re-optimization must be performed, which is time 
consuming.

The time efficiency was determined based on the aver-
age times required by the Dp and Rp models for dose 
prediction, which were 9.82 ± 0.37 s and 676.08 ± 81.23 s, 
respectively (i.e., the times differ with statistical signifi-
cance because the p-values were smaller than 0.05 when 
a ranked Wilcoxon test was performed).

The reason for why the time difference in the process in 
the dose prediction of the two models was large is that Rp 
spends a large amount of time on MLC (multi leap col-
limator) optimization and final dose calculation. On the 
other hand, in the case of Dp, dose prediction is possible 
in seconds due to the fact that only image information is 
required as an input, while model training takes a long 
time.

In this study, since the goals of the models of Dp and Rp 
are different, it is difficult to accurately compare the per-
formance. Rp can create a treatment plan, and it is also 
possible for the planner to directly intervene to create 
treatment goal or better plan. However, in the case of Dp, 
only 3D dose prediction in our model it is possible, and 
for a better plan, the process of training and validation of 
the model is required again. However, other studies only 
compared the clinical results [22–30] The Rp model was 
used to compare the dose prediction accuracy of the Dp 
model for the same patient test case.

The reason for the deviation in the prediction result of 
the Rp model may be due to the difference between the 

quality of the input plan and the dosimetric strategy for 
Rp model training, as suggested by Fogliata et al. [46].

As shown in Figs.  8 and 9, the potential cause of the 
difference from the clinical result in the gamma analy-
sis result in the right breast region is also a result of the 
imbalance in each plan objective.

This study had several limitations.
First, the current deep learning model provides only 

patient anatomical information (CT, contour) as inputs 
without dosimetric information. Second, only the learned 
one-type dose prediction is possible, and the deep neural 
network must be retrained for other IMRT or 3D-CRT 
treatment techniques and other sites.

Third, it is impossible to perform conversion into an 
executable treatment plan using the predicted dose dis-
tribution results.

Fourth, when selecting the plan data used to train the 
Rp plan, it is necessary to evaluate and confirm each 
plan by considering the difference between each primary 
object.

Nevertheless, dose predictability using deep learning 
was demonstrated in this study by quantitatively compar-
ing the patient dose predictions obtained by automated 
radiation treatment planning [47] using deep learning 
with those determined existing commercial programs. 
The dose distributions predicted by deep learning will 
help reduce the iterative optimization process because 
planners can identify the areas in which to deliver 
increased or decreased doses in advance.

In a future study, to overcome the limitations of the 
currently developed Dp model, the dosimetric feature 
[24, 30] should be included in the input data to reflect the 
physical characteristics to increase the dose prediction 
accuracy. Based on the learned model, transfer learning 
[21, 48] will be applied to enable dose prediction for vari-
ous treatment sites.

We will be able to evaluate the accuracy of the plan and 
the time it takes for the planning time after conducting a 
test on the new patient to see if the proposed model can 
provide effective guidance in order to satisfy the goal of 
the treatment plan.

We will develop a program using the Eclipse Scripting 
API to generate an optimal plan automatically based on 
the predicted dose.

Conclusion
In this study, VMAT dose distribution predictions 
obtained by deep learning were compared with Rapid-
Plan results for left-sided breast cancer patients using 
contour and CT images only. Our deep learning model 
produced superior dose predictions compared to Rapid-
Plan and showed that dose prediction using deep learn-
ing is possible. In addition, radiation treatment planning 
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based on the dose predicted using deep learning will 
improve the radiation treatment process by reducing 
the time required for planning, while maintaining plan 
quality.
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