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Abstract 

Purpose: To explore the association of genes in “PD-L1 expression and PD-1 check point pathway in cancer” to radio-
therapy survival benefit.

Methods and materials: Gene expression data and clinical information of cancers were downloaded from TCGA. 
Radiotherapy survival benefit was defined based on interaction model. Fast backward multivariate Cox regression was 
performed using stacking multiple interpolation data to identify radio-sensitive (RS) genes.

Results: Among the 73 genes in PD-L1/PD-1 pathway, we identified 24 RS genes in BRCA data set, 25 RS genes in 
STAD data set and 20 RS genes in HNSC data set, with some crossover genes. Theoretically, there are two types of 
RS genes. The expression level of Type I RS genes did not affect patients’ overall survival (OS), but when receiving 
radiotherapy, patients with different expression level of Type I RS genes had varied survival benefit. Oppositely, Type 
II RS genes affected patients’ OS. And when receiving radiotherapy, those with lower OS could benefit a lot. Type II RS 
genes in BRCA had strong positive correlation and closely biological interactions. When performing cluster analysis 
using these related Type II RS genes, patients could be divided into RS group and non-RS group in BRCA and META-
BRIC data sets.

Conclusions: Our study explored potential radio-sensitive biomarkers of several main cancer types in an important 
tumor immune checkpoint pathway and revealed a strong association between this pathway and radiotherapy sur-
vival benefit. New types of RS genes could be identified based on expanded definition to RS genes.
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Introduction
Radiation therapy remains the primary treatment for 
nearly two-thirds of cancers, including the primary cura-
tive or palliative treatment for breast cancer and adjuvant 

therapy for radical resection of gastric cancer [1–3]. 
Unfortunately, because of tumor heterogeneity, tumor 
response rates to radiotherapy vary conspicuously, even 
among patients who are diagnosed with the same tumor 
type [4]. Despite significant technological advances in 
radiation therapy for tumors in recent years, personal-
ized radiotherapy regimens based on cancer biology have 
become increasingly difficult [5]. A major issue in radia-
tion therapy is predicting cancer radio-sensitivity.

Biomarkers that provide information about tumor 
prognosis and predict tumor’s inherent radiation 
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sensitivity or its response to treatment may be valuable 
in helping to personalize radiation dose, allowing clini-
cians to make decisions about treatment regimens for 
different patients, while avoiding radiation-induced tox-
icity in patients who are unlikely to reap the benefits 
from the treatment [6, 7]. Tumor molecular mapping has 
been used to develop radio-sensitive genetic signatures 
and has been used to identify prognostic or predictive 
biomarkers of radiation responses [8–10]. Given strong 
evidence of the pathway-based genetic nature of cancer, 
one of the main shortcomings of past studies is the failure 
to use prior biological information into identifying bio-
markers [11]. The potential for carcinogenic mechanisms 
are grouped into pathways based on biological functions 
such as cell cycle, hypoxia, DNA damage, tumor micro-
environment, immune checkpoints and others [12–15].

As a key and famous regulatory immune checkpoint, 
programmed death-1 (PD-1) and its ligand PD-L1 check-
point pathway plays a crucial role in maintaining bal-
ance between immune tolerance and autoimmunity 
[16]. PD-L1 presented on the surface of the tumor cells 
activates the downstream of the PD-1 pathway to over-
inhibit T cells proliferation and differentiation [17] and 
promote immune escape and tumor growth [18]. In addi-
tion, the expression of PD-L1 has been found associated 
with tumor radio-sensitivity in a variety of solid tumor 
types also. When Bum-Sup Jang et al. [19–21] evaluated 
the predictive value of radio-sensitive gene signatures 
in invasive breast carcinoma and glioma, they found an 
interaction between radio-sensitive gene signatures and 
PD-L1. Xintong et al. [22] reported that in head and neck 
cancer, patients with high PD-L1 expression had better 
recurrence-free survival in receiving radiotherapy.

These evidences seem to indicate that PD-L1 expres-
sion with its regulation in solid tumors is affected by 
radiotherapy, thereby altering the outcome of patients’ 
prognosis. In this case, there is requirement to acknowl-
edge the association between regulatory mechanism 
of PD-L1/PD-1 in cancer and radiotherapy sensitivity. 
In solid tumors, up-regulation of PD-L1 is caused by 
activation of pro-survival pathways MAPK and PI3K/
Akt as well as transcriptional factors HIF-1, STAT3 and 
NF-kappa B [23]. It can be supposed that genes regulat-
ing PD-L1/PD-1 check point pathway may also associ-
ate with cancer radio-sensitivity and could be useful 
biomarkers for predicting radio-sensitive of cancer or 
as targets that promote radiation sensitivity. In fact, the 
relationship between these genes and radiotherapy sen-
sitivity of gastric cancer has been investigated, and some 
conclusions have been obtained [24].

In this study, we have enhanced the evidence and sup-
plemented the previous studies. Using TCGA data sets, 
we explored the association of genes in PD-L1/PD-1 

check point pathway in several major cancers to radio-
therapy survival benefit based on interaction model 
and validated in an external cohort. Conclusively, for 
precision medicine, our work offered more evidences 
and clues for using PD-L1/PD-1 related pathway genes 
as potential biomarkers to identify radio-sensitive for 
cancer patients or as targets that promote personalize 
radiation.

Materials and methods
Data sources
In view of the previous exploration [19–22, 24] of the 
relationship between PD-L1 and its regulatory genes to 
tumor radiotherapy sensitivity, we downloaded gene 
expression data sets for several most common cancers 
from The Cancer Genome Atlas (TCGA, http:// cance 
rgeno me. nih. gov/), including breast invasive carcinoma 
(BRCA), glioblastoma multiforme (GBM), head and neck 
squamous cell carcinoma (HNSC), brain Lower grade gli-
oma (LGG), liver hepatocellular carcinoma (LIHC), lung 
adenocarcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), stomach adenocarcinoma (STAD), respectively. 
The gene expression RNAseq was generated by Illumina 
platform sequencing and the unit was log2(x + 1) trans-
formed RSEM normalized count. Corresponding clinical 
information including survival data was procured from 
UCSC Xena browser (https:// gdc. xenah ubs. net).

The gene expression data sets were collated to exclude 
normal tissues and retain tumor samples. At the same 
time, we examined clinical information on each type 
of tumor and found GBM had too few samples for non 
radiotherapy (n = 18) while LIHC had too few samples 
for radiotherapy (n = 14). These two data sets were aban-
doned. Next, we removed subjects with missing survival 
or radiotherapy information. Patients with survival time 
less than 5  days were also excluded [24]. Then univari-
ate Cox analysis was performed on the remaining six 
tumor data sets, data sets (BRCA, HNSC, STAD) with 
radiotherapy being protective effect (hazard ratio, HR < 1, 
P < 0.05) were selected for subsequent analysis. In addi-
tion, external validation was performed using Molecular 
Taxonomy of Breast Cancer International Consortium 
(METABRIC) cohort (https:// www. cbiop ortal. org/ datas 
ets). Figure 1 is the flow chart.

Radio‑sensitive genes (RS genes)
We obtained a total of 73 genes (see Additional file  1: 
Figure S1, Additional file 3: Table S1) in “PD-L1 expres-
sion and PD-1 checkpoint pathway in cancer” from web 
of Kyoto Encyclopedia of Genes and Genomes (KEGG, 
https:// www. kegg. jp/). These genes are involved in the 
upstream regulation of PD-L1 expression or play a role 

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://gdc.xenahubs.net
https://www.cbioportal.org/datasets
https://www.cbioportal.org/datasets
https://www.kegg.jp/


Page 3 of 19Shen et al. Radiation Oncology          (2021) 16:223  

in downstream of the PD-L1/PD-1 pathway to inhibit T 
cells proliferation and differentiation [25].

In this study, we defined radio-sensitivity as: partici-
pants with different gene expression levels obtained dis-
crepant survival benefit from radiotherapy [24]. Based on 
the median value of a certain gene expression, the whole 
included patients were roughly divided into two groups 
as: the high expression group and the low expression 
group. And according to whether receiving radiotherapy 
or not, patients could be divided into radiotherapy (RT) 

group and non-radiotherapy (NRT) group. Thus, patients 
were divided into four groups: high expression RT (HRT) 
group, low expression RT (LRT) group, high expression 
NRT (HNRT) group, and low expression NRT (LNRT) 
group.

In a general way, if HRT group had better overall sur-
vival (OS) than HNRT group, while LRT group had no 
better OS than LNRT group for example, it was thought 
that the high expression group benefited from radio-
therapy [24]. However, according to the definition of 

Fig. 1 Schematic of study design
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interaction effect [26, 27], HRT group should have better 
OS than LRT group in the same time. In addition, there 
is another scenario that is usually overlooked: Different 
expression group might have different OS in NRT sce-
nario. In summary, Fig.  2 displays two types of interac-
tion relationship between gene levels and radiotherapy. In 
Fig. 2A (Type I), level A had no different effect compared 
to level B (say, P > 0.05) when in NRT scenario but had 
lower effect than level B (P < 0.05) when in RT scenario. 
Level B had significant improved effect in RT scenario 
compared to in NRT scenario (P < 0.05). It did not mat-
ter whether Level A had improved effect in RT scenario. 
In Fig. 2B (Type II), level A had significantly lower effect 
than level B (P < 0.05) when in NRT scenario but had no 
different effect (P > 0.05) in RT scenario. Level A had sig-
nificant improved effect in RT scenario compared to in 
NRT scenario (P < 0.05). Whether Level B had improved 
effect in RT scenario did not matter.

Strictly speaking, the RS genes should be discussed 
in four scenarios. Scenario A: in high expression group, 
HRT group had better OS than HNRT group. Scenario B: 
in low expression group, LRT group had better OS than 
LNRT group. Scenario C: in RT group, HRT group had 

different OS compared to LRT group. Scenario D: in NRT 
group, HNRT group had different OS compared to LNRT 
group. If scenario A or/and B happened and meanwhile 
only one of scenario C (corresponding to Type I) or D 
(corresponding to Type II) happened, the gene could be 
considered sensitivity to radiotherapy and was deemed as 
a RS gene.

Analysis methods
The relationship between genes expression levels and 
radiotherapy survival benefit was analyzed by the multi-
variate Cox proportional hazards models, the fast back-
ward [28] method based on Akaike information criterion 
(AIC) was used for variables selecting. In this study, 
we considered as many clinical variables as possible to 
screen out the best correction factors. Variables that 
remained in the multivariate Cox model were considered 
having an impact on OS. Specifically, for example, in high 
expression group, if radiotherapy had remained in mul-
tivariate Cox regression model (HR < 1), corresponding 
to scenario A happened; meanwhile in RT group, high 
expression group had HR < 1 compared to low expression 
group, corresponding to scenario C happened; and in 
NRT group, gene expression had no impact on OS (sce-
nario D not happened). This gene was considered to a RS 
gene.

For missing variable data, R packet mice (multiple 
imputation by chained equations) was used for multi-
ple interpolation [29]. Next we utilized the strategy of 
imputation stacking using R packet StackImpute, where 
multiple imputations of the missing data were stacked on 
top of each other to create a large data set [30]. We then 
estimated parameters in the analysis model by fitting a 
weighted model for Y|X on the stacked data set [31]. R 
packet pheatmap was used to perform cluster analysis 
based on gene expression. Kaplan–Meier (K–M) curves 
were used to show the survival curves. The log-rank test 
evaluated the statistically significant differences. Wil-
coxon test was used to compare continuous variables that 
were non-normal. Correlation was calculated by Pearson 
correlation coefficient (r). |r| > 0.8: as strong correlation; 
0.3 < |r| < 0.8: as moderate correlation; |r| < 0.3: as weak 
correlation [32]. The Search Tool for the Retrieval of 
Interacting Genes (STRING) [33] was applied to analyze 
protein–protein interaction (PPI) network (minimum 
required interaction score ≥ 0.7). All statistical analyses 
were performed using the R (4.0.2). A P value of 0.05 was 
considered significant. All statistical tests were two-sided.

Results
Identification of RS genes
We take BRCA data set as an example to illustrate 
the identification of RS genes. Table  1 shows the 

Fig. 2 Two types of interaction relationship between gene levels and 
radiotherapy
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demographic and clinical characteristics at baseline of 
the included 979 female BRCA participants. The median 
follow-up time was 849  days (Q1:477, Q3:1678). After 
fast backward multivariate Cox regression analysis, age, 
radiotherapy, chemotherapy, surgery type, margin status, 

progesterone receptor (PR) status, N stage, M stage and 
pathological stage were the impact factors of OS. Infor-
mation of HNSC and STAD are shown in Additional 
file 4: Tables S2 and Additional file 5: Table S3.

Additional file  6: Table  S4 shows 24 RS genes identi-
fied in BRCA after clinical impact factors adjustment 
and part are shown in Fig. 3. Patients with high expres-
sion of MYD88, RASGRP1 and TRAF6 benefited from 
radiotherapy (scenario A and C had statistical signifi-
cance, scenario D had no statistical significance, Type I 
RS genes). We called these genes as radio-sensitive genes 
within high expression (RGH). TIRAP and PTPN11 
were also RGH genes (scenario A and D had statistical 
significance while scenario C had no statistical signifi-
cance, Type II RS genes). Patients with low expression 
of HRAS, IKBKG, MAP2K2, TLR9 and CD3D, CD3G, 
IFNG, NFKBIA, PDCD1, CD274, PTPN6, STAT1, et cet-
era. benefited from radiotherapy (scenario B and C had 
statistical significance or scenario B and D had statisti-
cal significance). We called these genes as radio-sensitive 
genes within low expression (RGL). The unadjusted K-M 
curves of part of RS genes are shown in Fig. 4. RS genes 
of HNSC and STAD are also shown in Additional file 6: 
Table  S4. We compared RS genes in the three tumor 
data sets and found some croassover genes (see Fig. 5A). 
CD3D and NFATC1 were the common genes in the three 
tumor data sets.

Relationship of RS genes in BRCA 
We explored the correlation of expression level among 
these RS genes in BRCA patients (Fig.  6). There were 
weak to moderate correlation among Type I RS genes 
(Fig.  6A). However, a large number of Type II RS 
genes had strong positive correlation with each other 
(Fig.  6B/C). Further analysis of PPI network (Fig.  6D) 
shows that CD3D was at the hub position. The biological 
interactions between these Type II RS genes were closely 
related.

We performed cluster analysis using 7 Type I RS genes 
and 17 Type II RS genes respectively. Patients were 
divided into two clusters according to the outcome of 
cluster analysis. When using Type I RS genes, patients 
of the two clusters had no different radiotherapy survival 
benefit (see Additional file  2: Figure S2A/B). Neverthe-
less, when using Type II RS genes (STAT1 was not used 
due to extremely high expression value), patients of clus-
ter2 (n = 350) had much improved survival benefit under 
radiotherapy (see Fig. 7A/B).

Distribution of RS genes in BRCA 
We extracted BRCA patients receiving radiotherapy who 
survived more than 8  years (alive group, n = 49) and 
those who survived less than 3 years (dead group, n = 29) 

Table 1 Associations of clinical variables with OS in BRCA (total 
N = 979)

IDC, infiltrating ductal carcinoma; ILC, infiltrating lobular carcinoma; ER, estrogen 
receptor; PR, progesterone receptor; TNM, tumor-node-metastasis stage
a Clinical variables that were left after fast backward multivariate COX regression

N % HR (95%CI) P

Radiotherapya No 421 43.00 1.000

Yes 558 57.00 0.520(0.340, 0.795) 0.003

Chemothera-
pya

No 140 14.42 1.000

Yes 831 85.58 0.382(0.230, 0.635) < 0.001

Agea < 60 526 53.78 1.000

≥ 60 452 46.22 2.005(1.339, 3.004) < 0.001

Race White 680 74.97 1.000

Others 227 25.03 1.336(0.844, 2.116) 0.217

History of 
cancer

No 915 93.56 1.000

Yes 63 6.44 1.621(0.746,3.521) 0.223

Surgery  typea Mastectomy 465 50.05 1.000

Lumpectomy 235 25.30 0.928(0.544, 1.581) 0.782

Other 229 24.65 0.596(0.359, 0.989) 0.045

Margin 
 statusa

Negative 841 89.09 1.000

Positive/close 103 10.91 1.750(1.063, 2.882) 0.028

Histology IDC 697 71.20 1.000

ILC 191 19.51 0.950(0.551, 1.639) 0.854

Other 91 9.30 1.614(0.898, 2.900) 0.140

ER status Negative 215 22.95 1.000

Positive 722 77.05 1.118(0.585, 2.137) 0.736

PR  statusa Negative 308 32.98 1.000

Positive 626 67.02 0.563(0.375, 0.846) 0.006

HER2 Negative 496 60.41 1.000

Positive 142 17.30 1.172(0.682, 2.013) 0.567

Indetermi-
nate

183 22.29 0.904(0.572, 1.429) 0.667

Menopausal 
status

Pre/peri 286 30.75 1.000

Post 644 69.25 1.487(0.868,2.547) 0.148

T Stage T1/T2 822 84.22 1.000

T3/T4 154 15.78 0.971(0.565, 1.668) 0.914

N  Stagea N0 466 48.49 1.000

N1/N2/N3 495 51.51 1.851(1.096, 3.127) 0.021

M  Stagea M0 961 98.16 1.000

M1 18 1.84 1.998(1.031, 3.869) 0.040

Pathological 
 stagea

I/II 717 74.84 1.000

III/IV 241 25.16 2.147(1.269, 3.635) 0.004
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and compared the expression of 10 selected RS genes in 
the two groups (see Fig.  8A). From the box-plot, RAS-
GRP1 and TRAF6 as RGH genes had a higher expression 
level in the alive group than in the dead group (P < 0.05), 
patients with higher expression level of RGH genes 
gained survival benefit from radiotherapy. By contrast, 
we also extracted patients not receiving radiotherapy (see 
Fig. 8B). Most RGL genes had a trend that their median 
expression values in the alive group (n = 32) would be 
higher than those in the dead group (n = 29). This sug-
gested that the expression level of these RGL genes 
affected patients’ OS.

External validation
Table 2 shows the demographic and clinical character-
istics at baseline of the included 1902 female META-
BRIC participants. The median follow-up time was 
115.6 months (Q1:61.0, Q3:184.8). After fast backward 
multivariate Cox regression analysis, radiotherapy, age, 
surgery type, estrogen receptor (ER), HER2, molecular 
sub-types, tumor size (T stage), lymph nodes (N stage) 
and pathological stage were the impact factors of OS. 
Based on the same strategy, we identified 13 Type I RS 
genes and 11 Type II RS genes among the 73 PD-L1/

Fig. 3 Forest plot for the association analysis between OS and radiotherapy under different expression levels of 4 RS genes in BRCA. The adjusted 
factors include age, radiotherapy, chemotherapy, surgery type, margin status, PR status, N stage, M stage and pathological stage
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PD-1 pathway related genes in METABRIC data set 
(Additional file  6: Table  S4). RASGRP1 and MAP2K2 
were the common Type I RS genes in BRCA and META-
BRIC (Fig. 5B) and LAT, PTPN11 and ZAP70 were the 
common Type II RS genes (Fig. 5C). When performed 
cluster analysis using RS genes from METABRIC, Type 
II RS genes could divided the patients into RS cluster 
(n = 637) and non-RS cluster (n = 1265) (Fig. 7C/D).

Discussion
Along with some chronic diseases such as cardiovas-
cular disease, cancer remains one of the biggest killers 
of human health [34]. The World Health Organization 
(WHO, https:// www. who. int/) has recently announced 
on 5 March, 2021 that, the breast cancer has now over-
taken lung cancer as the world’s mostly commonly-diag-
nosed cancer and the new global breast cancer initiative 

Fig. 4 The unadjusted survival curves for the association analysis between OS and radiotherapy under different expression levels of 4 RS genes in 
BRCA. H: high expression; L: low expression; RT: radiotherapy; NRT: non-radiotherapy

https://www.who.int/
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highlights renewed commitment to improve survival. At 
the same day, new WHO publication provides guidance 
on radiotherapy equipment to fight cancer like colorec-
tal and lung cancer. Radiotherapy is remain one of the 
most effective tools to mitigate pain and suffering associ-
ated with advanced cancers, also, improve the quality of 
life and survival [35, 36]. Nevertheless, heterogeneity in 
terms of tumor characteristics, prognosis, and survival 
among cancer patients has been a persistent problem for 

many decades. Vast studies have shown that, the inves-
tigation of biomarkers related to radiation could provide 
another means by which radiotherapy could become per-
sonalized [2, 37].

Understanding the mechanism of tumors is also a 
major issue in identifying effective biomarkers and 
potential drug targets of radio-sensitivity [38, 39]. PD-1 
and its ligand PD-L1 are important immune checkpoints 
as a potential therapeutic target in cancer [18]. PD-L1/

Fig. 4 continued
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PD-1 pathway plays a critical role in transmitting co-
stimulatory molecules to activate T cells as the second 
signal and maintain the balance of the immune micro-
environment [40]. Well, when the body is invaded by the 
tumors, the balance of the immune micro-environment is 
destroyed. PD-L1 on tumor cells may engage PD-1 recep-
tors resulting in suppression of T-cell mediated immune 
response. Therapeutic antibodies blocking the PD-L1/
PD-1 pathway by targeting PD-L1 or PD-1 are highly 
effective in rescuing T cell anti-tumor effector functions 

[17, 41]. In addition, the expression level of PD-L1 relate 
to the radiotherapy sensitivity of tumors [19, 21]. As 
PD-L1 expression is regulated by the upstream signaling 
pathway, while PD-L1/PD-1 combination is transferred 
to the downstream T cell regulation as the second signal, 
the expression level of relevant genes in regulating PD-L1 
expression and in PD-1 checkpoint pathway in cancer 
appears to be of vital importance, which may indicate the 
potential sensitivity of the tumor to radiotherapy.

Fig. 4 continued
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In this study, we explored the radio-sensitivity of genes 
in PD-L1 expression and PD-1 checkpoint pathway in 
cancer using several major TCGA data sets including 
BRCA, HNSC and STAD. When the initial univariate 
COX analysis was performed, radiotherapy had non-
positive effect (HR ≥ 1) to OS in lung cancer and LGG, 
we excluded these type of tumors for further exploration. 
In LGG data set, we performed chi-square test between 

survival status/radiotherapy status and main clinic fac-
tors. We found that older (≥ 60) and higher tumor grade 
patients commonly received a higher percentage of radi-
otherapy and meanwhile these people had a much higher 
percentage died of LGG. Such confounding factors also 
happened in LUAD and LUSC data sets.

In addition, we systematically considered influential 
clinical factors in the data sets according to literature [20, 

Fig. 4 continued
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22, 24], clinical expertise knowledge and data missing 
condition. We performed ten of multiple interpolation to 
missing clinical variables that had a missing percentage 
lower than 20% and stacked them to perform weighted 
multivariate Cox regression. Using multiple imputa-
tion can better handle missing data by estimating and 
replacing missing values many times [42] and the result 
of using the stacked data set to perform weighted mul-
tivariate Cox regression was consistent with pooled data 
results by applying Rubin s combining rules [30]. There-
fore, the influential clinical variables were well controlled 
to ensure the reliability of the results. In the BRCA data 
set, radiotherapy, chemotherapy, age, surgery type, mar-
gin status, PR status, N stage, M stage and pathological 
stage were the impact factors of OS, which were reason-
able and validated [43].

Then, we developed a more comprehensive definition 
to radio-sensitive genes based on interaction theory. The-
oretically, there are two types of RS genes. The expression 
level of Type I RS genes did not affect patients’ overall 
survival (OS), but when receiving radiotherapy, patients 
with different expression level of Type I RS genes had 
varied survival benefit. Type II RS genes is the opposite. 
According to the updated definition, we identified 24 
RS genes in BRCA data set, 25 RS genes in STAD data 
set, 20 RS genes in HNSC data set and 24 RS genes in 
METABRIC data set among genes in regulating PD-L1/
PD-1 pathway in cancer (93/292), with overlapping genes 
between each other. We performed the same strategy to 
search RS genes in the published radio-sensitivity “31-
gene signature” [44] as a positive contrast, and found 
4 RS genes in BRCA data set, 11 RS genes in HNSC 
data set, 12 RS gene in STAD data set and 7 RS gene in 
METABRIC data set (34/124). In addition, we simulate a 
test to detect the relationship between survival and a ran-
dom gene set as a negative contrast. Univariate Cox anal-
ysis shown that a proportion of 383/5000 genes (less than 
10%) were related to survival benefit. Therefore, there 
was a strong relationship between PD-L1/PD-1 pathway 
in cancer and radiotherapy sensitivity.

Importantly, when we performed cluster analysis 
using the identified RS genes, Type II RS genes could 
divided the patients into RS group and non-RS group 
in different database (TCGA and METABRIC). These 
Type II RS genes had strong positive correlation and 
closely biological interactions with each other. In addi-
tion, RASGRP1 was common RGH & Type I RS gene in 
the two databases. Patients with higher expression level 
of RASGRP1 gained survival benefit from radiotherapy. 
RasGRP proteins play roles in such phenomena as: 
T cells maturation and functioning, B cells response, 
platelet aggregation, mast cells activity regulation, 
transformation and many other [45]. PTPN11 was 

Fig. 5 Venn plot for RS genes. A Venn plot for RS genes in BRCA, 
HNSC and STAD data sets. B Venn plot for Type I RS genes in BRCA 
and METABRIC data sets. C Venn plot for Type II RS genes in BRCA and 
METABRIC data sets
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Fig. 6 Correlation among RS genes in BRCA. A Correlation of expression levels of Type I RS genes. B Correlation of expression levels of Type II RS 
genes. C Relationship among Type II RS genes. D PPI network for Type II RS genes
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Fig. 6 continued
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Fig. 7 Cluster analysis. A The heatmap of cluster analysis using Type II RS genes in BRCA data set. B Survival curves under different clusters in BRCA 
data set. C The heatmap of cluster analysis using Type II RS genes in METABRIC data set. D Survival curves under different clusters in METABRIC data 
set
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Fig. 7 continued
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common RGH & Type II RS gene and ZAP70 was com-
mon RGL & Type II RS gene. PTPN11 gene expresses 
in most embryonic and adult tissues, and plays pivotal 
roles in cell proliferation, differentiation, survival and 
cell death [46]. ZAP70 is related to the immunity of 
cancers [47, 48].

This study has its merits. Firstly, we expanded the 
definition of radio-sensitive genes and explored the 
association of genes in important pathway of cancer to 
radiotherapy sensitivity using TCGA public data sets 
recognized as authoritative. Secondly, we took into 
account as much useful clinical information as possible 
to control impact factors by stacking multiple inter-
polation data, making the results more persuasively. 
Thirdly, we validated our strategy using a big external 

data set, METABRIC and proved that our conclusion 
was reliable. The limitation of this study is that we don’t 
have performed experimental study, also no cohort 
to verify the findings. In addition, because we only 
explored a few major cancers, more tumor types should 
be brought into the discussion.

Conclusion
In conclusion, our study identified potential radio-
sensitive biomarkers of several main cancer types in 
an important tumor immune checkpoint pathway and 
revealed a strong association between this pathway 
and radiotherapy sensitivity. New types of RS genes 
could be identified based on expanded definition to RS 
genes. Different types of tumors may share common 

Fig. 8 Box plots for the expression distribution of 10 RS genes in BRCA patients. A Patients received radiotherapy. B Patients did not receive 
radiotherapy
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carcinogenic mechanisms and may have same RS genes. 
We hope that further studies will be performed to con-
firm our findings.
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