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Abstract 

Background: Artificial intelligence (AI) shows great potential to streamline the treatment planning process. However, 
its clinical adoption is slow due to the limited number of clinical evaluation studies and because often, the translation 
of the predicted dose distribution to a deliverable plan is lacking. This study evaluates two different, deliverable AI 
plans in terms of their clinical acceptability based on quantitative parameters and qualitative evaluation by four radia‑
tion oncologists.

Methods: For 20 left‑sided node‑negative breast cancer patients, treated with a prescribed dose of 40.05 Gy, using 
tangential beam intensity modulated radiotherapy, two model‑based treatment plans were evaluated against the 
corresponding manual plan. The two models used were an in‑house developed U‑net model and a vendor‑devel‑
oped contextual atlas regression forest model (cARF). Radiation oncologists evaluated the clinical acceptability of 
each blinded plan and ranked plans according to preference. Furthermore, a comparison with the manual plan was 
made based on dose volume histogram parameters, clinical evaluation criteria and preparation time.

Results: The U‑net model resulted in a higher average and maximum dose to the PTV (median difference 0.37 Gy 
and 0.47 Gy respectively) and a slightly higher mean heart dose (MHD) (0.01 Gy). The cARF model led to higher aver‑
age and maximum doses to the PTV (0.30 and 0.39 Gy respectively) and a slightly higher MHD (0.02 Gy) and mean 
lung dose (MLD, 0.04 Gy). The maximum MHD/MLD difference was ≤ 0.5 Gy for both AI plans. Regardless of these 
dose differences, 90–95% of the AI plans were considered clinically acceptable versus 90% of the manual plans. Prefer‑
ences varied between the radiation oncologists. Plan preparation time was comparable between the U‑net model 
and the manual plan (287 s vs 253 s) while the cARF model took longer (471 s). When only considering user interac‑
tion, plan generation time was 121 s for the cARF model and 137 s for the U‑net model.

Conclusions: Two AI models were used to generate deliverable plans for breast cancer patients, in a time‑efficient 
manner, requiring minimal user interaction. Although the AI plans resulted in slightly higher doses overall, radiation 
oncologists considered 90–95% of the AI plans clinically acceptable.
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Background
Whole breast radiotherapy is a widely accepted local 
treatment for early breast cancer after breast-conserving 
surgery, as it reduces local recurrence and breast cancer 
death [1]. However, the process of treatment planning 
is manual and iterative, which can be time consuming. 
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Moreover, plan quality is prone to differences in experi-
ence of the planner [2]. In recent years, several methods 
have been developed to automate this process, includ-
ing machine learning (ML) and deep learning (DL) 
approaches [3–5]. Although most studies focus on the 
treatment sites prostate or head and neck, the num-
ber of studies focusing on whole breast radiotherapy 
increases [6–9]. Most of the ML and DL approaches 
result in a dose distribution prediction per voxel, which 
is not directly clinically applicable. Inverse optimization 
or dose mimicking can be used to infer clinically deliv-
erable plans [10–12]. To evaluate the automatically gen-
erated plans, many quantitative metrics are reported, 
such as mean and maximum doses to organs, and dose 
differences compared to clinical plans. However, to vali-
date the usefulness of the plans in the clinical workflow, 
additional qualitative review is recommended [5, 13]. In 
this study, two previously developed ML and DL models 
for whole breast radiotherapy are evaluated in a blinded 
review procedure by four physicians, in addition to quan-
titative review.

Methods
Patients
20 patients with left-sided node-negative breast cancer, 
treated in the Catharina Hospital between July 2020 and 
January 2021, were included in the study. The research 
was conducted on anonymized patient data according to 
Dutch data protection and privacy legislation.

As patients were treated in moderate deep inspiration 
breath hold, all treatment plans were made on breath 
hold CT scans (3 mm slice thickness). Clinical target vol-
ume (CTV) and organs at risk (OAR) were contoured 
following the ESTRO guidelines [14]. The planning tar-
get volume (PTV) was generated by 5 mm expansion of 
the CTV, followed by 5 mm cropping under the skin. The 
average PTV volume was 890 ± 425  cm3.

Treatment plans
Patients were treated with a prescribed total dose of 
40.05  Gy in 15 fractions, using tangential beam inten-
sity modulated radiotherapy (IMRT) plans with beam 
energy of either 6 (n = 17) or 10 MV (n = 3), depend-
ing on patient anatomy. For both manual and AI plan-
ning, each tangential beam consisted of at least one 
open segment and together, the two tangential beam 
directions had up to 8 segments of at least 9  cm2. The 
dose calculation grid resolution was 3 mm isotropically. 
RayStation Treatment Planning System (TPS) 9B (Ray-
Search Medical Laboratories, Stockholm, Sweden) was 
used for manual treatment planning, while Research 
version 9B (build 8.99) was used for the AI plans. Both 
TPS versions use a collapsed cone convolution dose 

calculation algorithm (type b) [15]. The manual and 
the AI plans were calculated on the same hardware 
(NVIDIA RTX6000, 12 vCPU, 64 GB RAM).

The isocenter was positioned in the center of the 
PTV, unless this would lead to a collision with the gan-
try, in which case the isocenter was moved inwards. 
The tangential beams were initialized at 130 and 310 
degrees and subsequently, automatic beam angle opti-
mization was performed in the 3D-CRT module of the 
TPS aimed at minimizing the dose to the heart, lungs 
and contralateral breast as previously described by 
Bakx et al. [16]. Using the same initial beam setup and 
beam energy, three plans were made: a manual plan 
and two model-based plans. The clinical goals used are 
summarized in Table 1.

Manual plans
Manual plans were made by radiotherapy technologists 
(RTTs), both more and less experienced, following rou-
tine clinical practice, using an inverse planning tech-
nique in which the RTT’s chose the beam energy and 
adjusted the objective functions. While all clinical goals 
should be met, the initial focus was on achieving the 
PTV coverage and additionally, the planner attempted 
to reduce the MHD and MLD while maintaining the 
PTV coverage goal. The planners were asked to focus 
on the task at hand and note the time required. After 
a first round of optimization, the leaves of the tangen-
tial fields with a contribution of > 100 MU per fraction 
are retracted from the skin surface (~ 4 cm) to promote 
robustness to swelling and breath hold position, fol-
lowed by further optimization. All plans were scaled 
to ensure that 98% of the PTV volume received at least 
95% of the prescribed dose.

Table 1 Percentage of the plans that met the clinical goals for all 
three planning methods

The goals in italics are of lower priority than the others, meaning they are target 
values, not hard constraints

MHD, mean heart dose; MLD, mean lung dose (sum of both lungs)

Clinical goals met [%]

Manual cARF U-net

PTV D2% < 107% 100 90 95

MHD < 3 Gy 95 95 95

MLD < 6 Gy 100 100 100

Contralateral breast, mean dose < 1 Gy 100 100 100

External -PTV, Max 10 cm3 < 107% 95 95 95

MHD < 2 Gy 95 90 90

Lungs V5Gy < 50% 100 95 95

MLD < 4 Gy 100 100 100
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AI planning
For the same patients, the RayLearner module of RaySta-
tion 9B was used to generate two additional plans using 
two separate AI planning models. In both cases, the mod-
els were used to predict the dose distribution based on 
the patient anatomy. As the predicted dose distributions 
are not directly clinically applicable, dose mimicking is 
used to translate them to deliverable plans afterwards. 
The dose mimicking algorithm available in the TPS is 
used, which involves direct machine parameter optimi-
zation to approximate the predicted dose distribution, 
while taking dose constraints into account (settings listed 
in Additional file 1: Table A.1). To obtain the final dose 
distribution, three intermediate collapsed cone convo-
lution dose calculations were performed, ending with a 
final collapsed cone convolution dose calculation [12].

The first model is an in-house developed model, which 
is an adapted version of the U-net architecture of Nguyen 
[17]. Input of the model consists of contours for the 
PTV, the body, heart and lungs. The second model was 
developed by RaySearch and is based on contextual atlas 
regression forests (cARF)[10]. A more detailed descrip-
tion of both models and their training on in-house clini-
cal data was previously published by Bakx et al. [7] and 
can also be found in the Additional file  1. The current 
study focused on the clinical applicability of both models.

After the AI plan generation, the leaves of the tangential 
fields with a contribution of > 100 MU per fraction were 
retracted from the skin surface (~ 4 cm) by the RTT and 
one last optimization run (40 iterations) was performed. 
As a final step, all plans were scaled to ensure that 98% of 
the PTV volume received at least 95% of the prescribed 
dose. The time required to perform the various parts of 
the AI planning process was recorded. Since the AI plan 
generation required no actions by the planner, except 
manually opening the leaves of the tangential fields, no 
influence of the planner’s experience was expected. The 
plans were generated by two planners trained in using the 
RayLearner module. The optimization time and time for 
manual actions were monitored separately.

Plan evaluation
Plans were evaluated based on a set of predefined DVH 
parameters, on conformity using the Paddick conform-
ity index (CI = (VPTV∩V100%Iso)

2

VPTV×V100%Iso
 ) [18], number of monitor 

units (MU) and time required for the planning proce-
dure. The DVH parameters were chosen in line with the 
Dutch national evaluation parameters for breast cancer 
treatment plans and are listed in Table  1 [19]. Besides, 
a complexity metric was calculated to compare created 
segments of manual and AI plans [20]. Additionally, a 
more subjective analysis was performed by 4 radiation 

oncologists, all specialized in breast cancer radiotherapy. 
The radiation oncologists were asked to independently 
perform a blind comparison of the three plans for all 
patients. They judged whether the separate plans were 
clinically acceptable and ranked them based on their 
preference, allowing equal ranking in case of no prefer-
ence, resulting in a ranking score of 1 (highest prefer-
ence) to 3 (lowest preference). They were encouraged to 
provide reasons for their choice.

Statistical evaluations were performed in IBM SPSS 
Statistics Version 25. For all comparisons, the Wilcoxon 
Signed Rank test was used and a p value of 0.05 or lower 
was considered statistically significant. Unless stated oth-
erwise, the p values demonstrate whether the specific AI 
plan is different from the manual plan.

Results
Dose distribution and clinical goals
Examples of the dose distribution for the different plans 
are shown in Fig. 1. The percentage of the plans in which 
particular clinical goals were met is stated in Table 1. The 
PTV D2% goal was not met in 2/20 cARF plans, com-
pared to 1/20 U-net and none of the manual plans. For 
one patient, none of the plans met the MHD goal (man-
ual plan 4.10 Gy; cARF 3.76 Gy; U-net 4.47 Gy).

Relevant DVH-parameters are displayed in Fig.  2 
and Table  2. After scaling the dose to ensure PTV 
V95% = 98%, both the average and the D2% PTV dose of 
cARF and U-net plans were higher than that of the cor-
responding manual plan. The median difference in PTV 
average dose was + 0.30  Gy (range − 0.01 to 0.83  Gy, 
p < 0.01) for the cARF plans and + 0.37 Gy for the U-net 
plans (range − 0.08 to 1.07  Gy, p < 0.01), respectively. 
The median difference in PTV D2% was + 0.39  Gy 
(range − 0.04 to 1.32  Gy, p < 0.01) for the cARF plans 
and + 0.47  Gy for the U-net plans (range − 0.45 to 
1.19  Gy, p < 0.01), respectively. The Paddick CI was not 
significantly different (Fig.  2). Additional DVH param-
eters are reported in Additional file 1: Table A.2.

For the cARF plan, mean heart and lung doses were 
higher than in the corresponding manual plan, albeit 
slightly (MHD: median difference + 0.02 Gy, range − 0.29 
to 0.49  Gy, p < 0.05; MLD: median difference + 0.04  Gy, 
range − 0.09 to 0.42  Gy, p < 0.05; Lung V5Gy median 
difference + 0.06  Gy, range − 0.13 to 0.48  Gy). For the 
U-net plan, the MHD was higher than for the manual 
plan (median difference + 0.01 Gy, range − 0.2 to 0.37 Gy, 
p < 0.05).

The number of MU required for the cARF plans was 
higher than for the manual plans (median + 7%, p < 0.05). 
There was no difference in the number of MU needed 
for the U-net compared with the manual plans. Also, no 
significant difference was found between the complexity 
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of the manual and U-net plans (median 0.52, range 0.34–
0.72 and 0.57, range 0.45–0.79, respectively), whereas the 
complexity of the cARF plans (median 0.61, range 0.48–
1.04) was significantly higher.

Plan generation time
The time needed to generate a plan is reported in Fig. 3. 
The median time needed was 253  s (range 72–984  s) 
for the manual plans, 471  s (430–550  s, p = 0.014) for 
the cARF plans and 287 s (229–353 s, p = 0.411) for the 
U-net plans. The variation in plan generation time is 
larger for the manual plans than for both AI plans. After 

subtracting the computation time, the remaining time 
needed for user interaction was 121 s (92–180 s) for the 
cARF plans and 136  s (53–205  s) for the U-net plans. 
For the manual plans, the computation time was not 
recorded separately as it is often interleaved with manual 
adjustments.

Evaluation by radiation oncologists
The results of the evaluation of the plans by the radia-
tion oncologists are summarized in Table 3 and Fig. 4. 
Individual scoring results can be found in the Addi-
tional file  1: Figure A.2. 90–95% of the AI plans were 

Fig. 1 Examples of an axial slice of the dose distribution of the different plans for two patients
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considered clinically acceptable. The radiation oncolo-
gists had a slight preference for the manual plans, as 
can be deduced from the lower average rank. In 35% of 
the cases the 4 observers independently agreed that the 

AI plan was equally suitable or better than the manual 
plan. In 15 and 20% of the cases (for cARF and U-net 
respectively), the AI plan was considered worse than 
the manual plan by all radiation oncologists. In 45–50% 
of cases there was no consensus.

Fig. 2 Relevant DVH‑parameters for PTV, heart and lung. The red crosses represent outliers. The median is indicated with a red line. For the PTV, the 
dotted line represents the prescribed dose of 40.05 Gy
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The appreciation of the AI plans differed between radi-
ation oncologists, as can be seen from Fig. 4. One of the 
radiation oncologists always preferred the manual plan 
(observer 3), one preferred the U-net plan over the man-
ual plan for a single patient (observer 1) and the other 
two radiation oncologists preferred the AI plan relatively 
often (observers 2 and 4). Based on the explanations pro-
vided, the radiation oncologists focused mostly on dose 
coverage in the PTV. Interestingly, the two radiation 

oncologists who preferred the AI plans relatively often 
(observer 2 and 4), praised the coverage of the 100% 
isodose line, while observer 3 favored a 95% isodose cov-
erage and never preferred any AI plan over the manual 
plan. Other factors underlying their choices were the 
absence of hotspots (as visually perceived) and lower 
mean heart doses. Judging from Fig.  4 and the average 
rank given to both AI plans, both models performed 
comparably.

Discussion
In this study, two previously developed dose prediction 
models for whole breast radiotherapy were clinically 
validated. In addition to a quantitative review of DVH 
parameters, a qualitative review was performed by four 
physicians through a blinded review of manually and 
automatically created plans.

Both AI plans resulted in a significant higher aver-
age and maximum dose to the PTV and higher average 
dose to the heart, whereas only the cARF model resulted 
in plans with a significant higher dose to the lungs. For 
the U-net plan, the higher dose to the PTV compared 
to the manual plan was also observed previously for the 
mimicked dose distributions [7], although, this was not 
the case for the cARF plans. Furthermore, the differ-
ence in dose to PTV could partially be explained by the 
fact that an extra criterion for the average PTV dose was 
introduced in our institute, based on the Dutch national 
consensus, after training of the models (Additional file 1: 
Table A.3). While the planners were using the old criteria 
for all manual plans, their recent experience with slightly 
stricter PTV dose criteria could have inadvertently influ-
enced their work. However, the differences in doses to 
the PTV and OARs were not found to be clinically rel-
evant, which is reflected by the high acceptance rate for 
both models.

For the automated planning process, the mimicked 
dose distributions were evaluated without further opti-
mization. In 90 to 95% of the cases, the AI models pro-
duced clinically acceptable plans, leading to an efficient 
and consistent workflow. In cases were the plans are 
not assessed as clinically acceptable, the TPS allows for 

Table 2 DVH‑parameters for PTV, heart and lungs represented as mean dose ± standard deviation

Asterisks indicate significant differences with the manual dose distribution (p ≤ 0.05)

PTV Lungs Heart

Average dose [Gy] Difference w.r.t. 
prescribed dose [%]

D2% [Gy] MLD [Gy] V5Gy  [cm3] MHD [Gy]

Clinical 40.07 ± 0.40 + 0.1 41.69 ± 0.57 1.92 ± 0.62 325 ± 85 1.17 ± 0.77

cARF 40.37 ± 0.35* + 0.8 42.01 ± 0.56* 1.98 ± 0.64* 333 ± 87* 1.23 ± 0.76*

U‑net 40.53 ± 0.36* + 1.2 42.02 ± 0.56* 1.96 ± 0.64 331 ± 86 1.24 ± 0.87*

Fig. 3 Time needed for plan generation. For the AI plans, the time 
spent on user interaction is separately specified. The red crosses 
represent outliers

Table 3 Evaluation of the plans by the radiation oncologists

Acceptable 
for all

Average 
ranking

Consensus 
autoplan 
worse

Consensus 
autoplan 
equal or 
better

No 
consensus

[%] – [%] [%] [%]

Man‑
ual

90 1.4

cARF 90 1.7 15 35 50

U‑net 95 1.6 20 35 45
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further manual optimization and this is the way we intend 
to introduce these AI models clinically. Additionally, the 
mimick settings can be optimized to better adhere to the 
clinician’s preferences or to small adjustments in clinical 
goals without having to retrain the model. Also, multiple 
plans can be generated with mimick settings focusing 
more on specific clinical goals. Future improvements in 
plan quality could therefore include optimization of the 
mimick settings.

Time reduction is an important goal of automation 
of the treatment planning process. In the manual plan-
ning process, patients with an aberrant anatomy lead to 
an increase of time spent on optimization of the treat-
ment plan, resulting in the outliers which are visualized 
in Fig. 3. However, the time spent by both models is inde-
pendent on patient anatomy and therefore results in a 
more consistent, predictable process. The AI plans cor-
responding to the two manual plans that took ≥ 15 min to 
make, were considered clinically acceptable by all radia-
tion oncologists, while for one patient, the manual plan 
was rejected by one radiation oncologist. As the compu-
tation time for the AI plans is dependent on hardware, 
it is more relevant to analyze the user interaction time. 
As is shown in Fig. 3, the user interaction time is lower 
for both models, than the total time spent when manu-
ally creating a treatment plan. Additional scripting of 
the remaining manual tasks could reduce the interaction 
time even further. Taking this into account, next to the 
fact that hardware for computing will only improve in the 
near future, it can be stated that both models result in a 
more time efficient process. Based on the slightly higher 
time efficiency and lower plan complexity metric than 
the cARF model, we plan to introduce the U-net model 

into clinical practice, where we will of course adhere to 
e.g., the Medical Device Regulation.

A few other studies involving dose prediction mod-
els for breast cancer have been performed. Ahn et  al. 
compared an in-house developed DL model, based on 
U-Net, with the auto-planning module available in the 
treatment planning system Eclipse [6]. For the PTV they 
found differences between both models of less than 1%, 
but larger differences were found for the OARs, result-
ing in better prediction of the DL model. However, the 
plans predicted by the DL model were not executable 
and still need an extra step to be clinically deliverable. 
Hedden and Xu compared a two-dimensional (2D) and 
three-dimensional (3D) model, both based on the U-Net 
architecture, where they found better results for the 
3D model [8]. Dose differences of the mean dose for all 
regions were within 0.05%, except outliers, where the 3D 
model outperformed the 2D model for the right lung and 
heart. Similar to Ahn et al., the predicted doses still need 
inverse planning to be clinically deliverable, and are cur-
rently intended to be used as reference during the plan-
ning process. In contrast to these two studies, Sheng et al. 
developed a ML model able to create clinically deliver-
able plans, using a random forest model for fluence esti-
mation, and enabling interactive planning by a fluence 
fine tuning model [9]. Except for an increased mean heart 
dose for the AI plans, no statistically significant differ-
ences were found between the AI plans and clinical plans.

A limitation of the above mentioned studies is the lack 
of a qualitative review, which is highly recommended to 
validate clinical usefulness [5, 13]. Recently, McIntosh 
et  al. published a study about the clinical integration of 
an AI model for prostate cancer, including quantitative 

Fig. 4 Ranking of the AI plans in comparison with the manual plan by the Radiation Oncologists on an individual basis
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and qualitative review [21]. In two phases, a retrospective 
simulation and a prospective deployment study phase, 
89% of plans generated by the AI model were deemed 
to be clinically acceptable, which is comparable to our 
results. Overall, the AI-generated plan was selected in 
72% of cases, although notable differences in the review-
er’s preference for manual or AI plans were observed. In 
our study, this difference in preference is reflected in the 
results, as two radiation oncologists almost never pre-
ferred the AI plans, while the two other radiation oncolo-
gists often preferred them. However, in 35% of the cases 
there was a consensus that the AI plan was equal to or 
better than the manual plan. The observed lack of con-
sensus could be considered a result of differing personal 
preferences, which calls for further education, harmoni-
zation and guidelines.

Conclusions
In summary, two AI models were used to generate deliv-
erable and clinically acceptable plans for left-sided, node-
negative breast cancer patients, requiring minimal user 
interaction. The radiation oncologists considered 90–95% 
of the AI plans clinically acceptable and plan genera-
tion was time-efficient. Therefore, we plan to introduce 
the U-net model-based plan into clinical practice. Future 
improvements will entail optimization of the dose mim-
icking settings and expanding the AI toolbox with models 
for node-positive breast cancer patients.
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