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Abstract 

Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. 
The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area 
to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microen-
vironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, includ-
ing tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the 
irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the 
trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irra-
diation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of 
CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines 
induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released 
chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells 
and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour 
properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to tar-
get specific chemokines to alleviate radiation-induced injury or promote tumour control.
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Background
RT is administered as a curative or palliative therapy in 
more than 50% of cancer patients [1]. The most frequent 
and lethal lesions that occur during radiation include sin-
gle-strand breaks (SSBs), double-strand breaks (DSBs), 
DNA-DNA or DNA–protein cross-links, base release and 
other chemical modifications, and multiple damaged sites 
in DNA [2, 3]. Most research on improving the efficacy 
of RT has focused on tumour cells [4]. However, tumour 
lesions are not purely composed of cancer cells, and mul-
tiple components are present with cancer cells. These 

components include (1) immune cells; (2) fibroblasts and 
epithelial cells; (3) extracellular matrix proteins; (4) blood 
and lymphatic vessels; and (5) metabolites, chemokines, 
and cytokines [5]. RT can influence these components in 
different manners, thus remodelling the tumour micro-
environment. In tumour tissues, radiation could induce 
local release of inflammatory cytokines, temporarily 
eradicate local radiation-sensitive immune cell lineages, 
and promote immune cell trafficking and immune cell 
activation [6]. Immune cell subtypes, including dendritic 
cells (DCs) or cytotoxic lymphocytes, promote antitu-
mour immunity. However, suppressive cells could also be 
attracted by radiation. In these contexts, chemokines play 
fundamental roles.

Chemokines include different subfamilies according 
to the domain found at the N-terminus. CC chemokines 
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are one of these families and have an N-terminal CC 
domain [7, 8]. CC chemokines are represented using 28 
symbols. The chemokines C–C motif chemokine ligand 
(CCL)9 and CCL10 are the same chemokine; thus, there 
are a total of 27 CC chemokines [7, 8]. These chemokines 
form a complex network that influences the distribution 
of immune cells in the tumour microenvironment [9]. 

Although the role of CC chemokines in cancer has been 
discussed elsewhere, the relationship between radiation 
and these chemokines has not been described. The aim of 
this review was to collect information about the involve-
ment of each CC chemokine in radiation (Fig. 1).
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Fig. 1 CC chemokines in radiation responses. The figure shows the chemokines released by tumour cells or adjacent normal cells. In tumour 
tissues (left part, green), the released chemokines could act on tumour cells or attract different immune subsets, which could promote tumour 
control or metastasis. In normal tissues (right part, red), radiation promotes the production of chemokines in epithelial cells, endothelial cells or 
fibroblasts. The released chemokines could trigger EMT in primary cells. Multiple immune cell subsets could be recruited, including macrophages, 
lymphocytes, eosinophils, neutrophils and microglia. These outcomes ultimately lead to radiation-induced injury. Abbreviations: MSC, MSCs; MDSCs, 
myeloid-derived suppressor cells; TAMs, tumour-associated macrophages; TILs, tumour-infiltrating lymphocytes; DC, dendritic cells; Treg, regulatory 
T lymphocytes
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CCL2
CCL2, also known as monocyte chemoattractant protein 
(MCP)-1, can bind to multiple receptors, including CC 
chemokine receptor (CCR)1 [10], CCR2 [11], CCR4 [12] 
and CCR5 [13]. CCL2 is also an antagonist of CCR3 [14]. 
The main function of CCL2 involves the recruitment of 
monocytes to inflammatory sites [15–17]. In tumours, 
CCL2 can be secreted by multiple cell types, including 
tumour cells [18–21], myeloid-derived suppressor cells 
(MDSCs) [22], mesenchymal stem cells (MSCs) [23], 
tumour-associated macrophages (TAMs) [19, 24–26], 
tumour-associated neutrophils (TANs) [27], and can-
cer-associated fibroblasts (CAFs) [28–30]. It has been 
reported that RT can induce the expression of CCL2 [31, 
32]. In this section, we will discuss the significance of 
CCL2 in radiation-related events.

CCL2 is involved in the radiation‑induced immune 
response
Promotion of macrophage infiltration
As mentioned previously, one of the most important 
functions of CCL2 is the recruitment of monocytes. 
It has been reported that radiation can promote mac-
rophage infiltration in lung cancer. This infiltration may 
promote tumour progression through the induction of 
EMT [33] or triggering an immunosuppressive micro-
environment [34]. IL-6 was shown to play a positive 
role in radiation-induced macrophage migration. When 
IL-6 signalling was blocked, radiation-induced CCL2 
upregulation was inhibited. Neutralizing CCL2 signifi-
cantly reduced the number of migrated macrophages, 
indicating that CCL2 was downstream of IL-6 signalling 
and mediated radiation-induced macrophage infiltration 
[35]. In the radioresistant pancreatic ductal adenocar-
cinoma (PDAC) model, tumour-derived CCL2 was sig-
nificantly upregulated, resulting in increased infiltration 
of inflammatory monocytes and macrophages but not T 
cells. When CCL2 was blocked by a specific antibody, the 
recruitment of inflammatory monocytes was impaired, 
and tumour growth was delayed [36].

Recruitment of MDSCs
Radiation can induce the recruitment of MDSCs. These 
CCR2-expressing MDSCs contribute to radioresist-
ance. Using CCR2-knockout mice or CCR2-depleting 
antibodies can reverse the inhibitory effect of MDSCs. 
The recruitment of MDSCs was further shown to be 
dependent on activation of the STING pathway. The 
activated STING pathway promoted the production of 
type I IFN, which induced CCL2, CCL7, and CCL12 
expression, mobilizing monocytes to tumours [37].

Recruitment of T cells
In addition to the effect on monocytes, CCL2 is 
involved in the recruitment of T cells. In a sarcoma 
mouse model, 20  Gy radiation upregulated CCL2 
expression. This outcome was associated with the acti-
vation and increased infiltration of Th1/Tc1 T cells 
in the tumour microenvironment [38]. In a murine 
model of head and neck squamous cell carcinoma, 
mice received 7.5 Gy radiation. Irradiation upregulated 
CCL2 production, promoting the infiltration of tumour 
necrosis factor-alpha (TNFα)-producing monocytes 
and  CCR2+ regulatory T cells (Tregs). In this context, 
monocyte-derived TNFα activated Tregs, inhibiting the 
effect of RT [39].

The contradictory effects of CCL2 on antitumour 
immunity may be dependent on the experimental 
context, especially radiation dose. A higher dose may 
stimulate a stronger immune response. In most cases, 
CCL2 attracts immunosuppressive monocytes, which 
contribute to tumour progression. This finding suggests 
that inhibiting CCL2 with radiation may promote the 
efficacy of RT.

CCL2 mediates radioresistance
In a nasopharyngeal carcinoma (NPC) model, CCL2 
correlated with radioresistance and metastasis. CCL2 
expression was significantly elevated in HONE1-IR 
cells and recurrent NPC tumours. CCL2 could pro-
mote adaptive radioresistance, metastasis, and EMT in 
NPC cells. Inhibiting CCL2 enhanced the sensitivity of 
NPC cells to radiation. In clinical cohorts, high CCL2 
expression could predict poorer distant metastasis-free 
survival [40].

CCL2 and radiation‑induced toxicity in normal tissue
Although the primary tumour is the direct target of 
radiation, normal tissues are inevitably irradiated. 
Radiation-induced injury usually encompasses two 
phases: an early phase characterized by tissue inflam-
mation and a late phase characterized by tissue fibrosis. 
Depending on the irradiated site, organs develop radia-
tion-induced injury, including the lung, liver, intestine 
and neurons. This section will discuss the role of CCL2 
in radiation-induced injury.

Radiation‑induced lung injury
Increased expression of CCL2 is related to radiation-
induced toxicity in normal tissue [41]. In a mouse 
model of radiation‐induced pulmonary injury, both the 
selective CCL2 inhibitor bindarit (BIN) and knockout 
of the main CCL2 receptor CCR2 protected against 
normal lung tissue injury in mice. RT-induced vascu-
lar dysfunction and associated adverse effects were 
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alleviated. RT-induced expression of CCL2 was abro-
gated by inhibiting CCL2 signalling. Lung fibrosis was 
delayed by long-term CCL2 signalling inhibition [41]. 
EMT has been reported to be involved in radiation-
induced lung toxicity. Irradiated human pulmonary 
alveolar epithelial cells (AECs) (HPAEpiC cells) exhib-
ited upregulated CCL2 and CCR4 expression. In  vitro 
treatment with CCL2 induced EMT in HPAEpiC cells. 
This effect was weakened by the bioactive component 
of Radix Ophiopogonin B, CCR4 knockdown, or U0126 
(a MEK/ERK inhibitor) [42]. However, not all radia-
tion doses or modes promoted CCL2 secretion. Release 
of CCL2 from human umbilical vein endothelial cells 
(HUVECs) depended on the dose rate, and 4.1 mGy/h 
was optimal [43]. CCR2, the receptor for CCL2, is a 
marker of inflammatory monocytes. Mice deficient for 
CCR2 exhibited no pulmonary fibrosis after being irra-
diated and showed decreased numbers of infiltrating 
and interstitial macrophages [44]. Reactive oxygen spe-
cies (ROS) have been implicated in radiation-induced 
pulmonary injury and fibrosis [45]. A study revealed 
that inducible nitric oxide synthase (iNOS) promoted 
the production of inflammatory cytokines such as 
CCL2 [46]. This finding suggests that radiation-induced 
injury was not due to a single factor but to the interac-
tion between multiple factors.

Radiation‑induced brain and liver injury
CCR2 has been shown to mediate cognitive impair-
ments induced by irradiation. CCR2 knockout (-/-) mice 
received 10 Gy cranial irradiation. Compared with wild-
type mice, CCR2 deficiency prevented hippocampus-
dependent spatial learning and memory impairments 
induced by cranial irradiation. Moreover, CCR2 defi-
ciency normalized the fraction of pyramidal neurons 
[47]. Irradiation to treat brain tumours could create a 
chronic neuroinflammatory state resulting in progres-
sive cognitive decline. This effect was associated with 
the upregulation of CCL2, and inhibiting CCL2 signal-
ling could attenuate this effect [48]. CCL2-deficient mice 
exhibited attenuated chronic microglial activation, which 
allowed for the recovery of neurogenesis. In radiation-
induced liver damage, multiple chemokines, including 
CCL2, are released after irradiation. (Myo)fibroblasts in 
portal vessels may be one of the major sources of these 
chemokines [49].

Interestingly, not all radiation induces normal tissue 
injury. Compared with conventional RT (CRT), syn-
chrotron microbeam radiation therapy (MRT) does 
not induce CCL2 expression in normal tissue [50]. This 
may explain why synchrotron MRT achieved equiva-
lent tumour control as CRT but showed reduced normal 

tissue damage. This finding highlights the importance of 
radiation technology in radiation-induced injury.

CCL2 as a therapeutic target
Based on these findings, CCL2 may be a therapeutic tar-
get or marker of normal tissue injury during irradiation. 
Numerous studies have investigated drugs that could 
prevent the release of radiation-induced inflammatory 
cytokines. Pravastatin is used to lower cholesterol, and 
it was found that pravastatin could limit the increase in 
blood CCL2 induced by radiation [51]. Fibroblast growth 
factor 2 peptide (FGF-P) is a peptide derived from the 
receptor-binding domain of fibroblast growth factor 2. 
In acute gastrointestinal syndrome (AGS) after radiation, 
FGF-P could reduce several proinflammatory cytokines, 
including CCL2 [52]. Inhibiting uPA and uPAR abrogated 
CCL2 expression in meningioma cell lines that were 
treated with radiation [53]. This outcome was accompa-
nied by reduced ERK activation, nuclear translocation 
of Rel-A, and NF-κB-DNA binding activity. CCL2 is a 
marker of late rectal toxicity in prostate cancer patients 
undergoing RT. In patients with grade 2 late rectal toxic-
ity, CCL2 levels were significantly increased [54]. Evalu-
ating CCL2 levels at an earlier phase and targeting CCL2 
may help prevent the development of rectal toxicity.

CCL3
CCL3, also known as macrophage inflammatory 
protein-1α (MIP-1α), was first purified from the super-
natant of endotoxin-induced murine macrophages [55]. 
Multiple cell types can produce CCL3, including immune 
cell subtypes, fibroblasts, and epithelial cells, as well as 
platelets, basophils, and eosinophils [56, 57]. CCL3 binds 
to CCR1, CCR4, and CCR5, exerting various effects 
on multiple immune cell subtypes. Due to the diverse 
functions of CCL3, it is involved in diverse biological 
processes.

CCL3 is involved in the radiation‑induced immune 
response
In a hepatocellular carcinoma model, mice treated with 
MIP-1α and irradiation exhibited significantly enhanced 
antitumour effects. Immunological markers, including 
CD8A and CD107A, were also increased [58]. In a phase 
I clinical trial, patients with breast cancer were treated 
with intratumoural  H2O2 and RT. Blood marker analy-
sis highlighted significant associations between MIP-1α 
and the tumour response [59]. This finding suggests that 
blood CCL3 may serve as a predictive marker for treat-
ment response in specific cancer types.
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CCL3 and radiation‑induced injury
CCL3 was reported to contribute to the development of 
radiation-induced injury. Both in vitro and in vivo experi-
ments showed that CCL3 was increased by radiation. 
Mice deficient in CCL3 exhibited reduced inflammation, 
no significant septal thickening, and small collagen depo-
sition foci in lung tissues after radiation. This effect was 
mediated by CCR1 but not CCR5. Both  CCR1−/− mice 
and the CCR1 inhibitor BX-471 ameliorated radiation-
induced injury. CCR1 has been reported to promote 
Th2 cell recruitment. In  CCR1−/− mice, Th2 cytokines 
were not increased after irradiation. These results indi-
cated that Th2 cytokines and cells are involved in the 
development of fibrosis [60]. Samples from radiated 
human conduit arteries exhibited sustained expression of 
inflammatory genes, including CCL3, and this radiation-
induced CCL3 upregulation was due to NF-κB activation 
[61]. However, a study showed that in patients with pros-
tate cancer who received three-dimensional conformal 
radiation therapy, MIP-1α levels were not sensitive to 
irradiation [62]. Based on these results, CCL3 could be 
a predictive biomarker for treatment response. This dis-
crepancy in the effects of CCL3 may be attributed to the 
different responses in specific irradiated sites.

CCL3 as a therapeutic target
Cryptotanshinone (CTS) is a major lipophilic extract 
from Salvia miltiorrhiza Bunge (Danshen). CTS can 
attenuate collagen deposition and pulmonary fibrosis 
in radiation-induced lung injury (RILI) rats by mitigat-
ing radiation-induced activation of CCL3 and its recep-
tor CCR1 [63]. The reduced secretion of CCL3 alleviates 
the radiation-induced inflammatory microenvironment, 
subsequently attenuating the initiation of fibrosis. Since 
mitotic cells are highly sensitive to radiation, reducing 
the number of cells undergoing mitosis may be an ideal 
approach to protect normal tissues. MIP-1α induces a 
transient 50% reduction in the number of mitotic cells 
in small intestinal crypts [64]. BB-10010 is an analogue 
of MIP-1, and pretreatment with BB-10010 before irra-
diation significantly increased the number of surviving 
crypts (10%), which could prevent the side effects asso-
ciated with RT [65]. This finding may support the use of 
BB-10010 in patients undergoing abdominal or pelvic 
treatments. ECI301 is a human MIP-1α variant. Daily 
administration of 2  µg of ECI301 for 3–5 consecutive 
days after local irradiation prolonged survival and eradi-
cated tumour growth in CT26 and LLC models. The 
abscopal effect was observed, and this antitumour effect 
depended on  CD8+ and  CD4+ lymphocytes and NK1.1 
cells [66].

CCL5
CCL5 (also known as regulated on activation, normally 
T cell expressed and secreted (RANTES)) belongs to 
the C–C motif chemokine family. CCL5 binds to CCR5 
with high affinity, but it can also bind to CCR1, CCR3 
and CCR4 [67]. CCL5 can be found in cancer cells, 
CAFs, MSCs, MDSCs, TAMs, and anticancer tumour-
infiltrating lymphocytes (TILs) [68]. The role of CCL5 in 
cancer is complicated; it has both protumour and antitu-
mour properties. CCL5 is elevated in multiple tumours 
and indicates a poor prognosis [69]. However, studies 
have shown that CCL5 promotes antitumour immunity 
by recruiting antitumour T cells and DCs to the tumour 
microenvironment [67]. Thus, CCL5 is a double-edged 
sword in cancer.

CCL5 promotes tumour progression
Tumour cell‑derived CCL5
Macrophages are predominantly found in the tumour 
microenvironment. Although RT is effective at reducing 
primary tumours, it may enhance macrophage infiltration 
to tumour sites, accelerating tumour progression [70, 71]. 
In oesophageal squamous cell carcinoma, RT enhanced 
the expression levels of 12-LOX in tumour cells. Subse-
quently, CCL5 expression was upregulated through the 
AKT/NF-κB pathway. Elevated CCL5 can recruit mac-
rophages to tumour tissues and promote their polari-
zation to the immunosuppressive M2 subtype, thereby 
facilitating metastasis [72]. Similarly, radiation promotes 
macrophage migration in non-small-cell lung cancer 
models. CCL5 is responsible for this effect, as blocking 
CCL5 significantly reduces the number of migrated mac-
rophages. Further analysis showed that CCL5 was upreg-
ulated by IL-6, and IL-6 inhibition impaired macrophage 
migration [35].

MSC‑derived CCL5
MSCs play important roles in cancer metastasis and are 
involved in radiation-induced cancer lung metastasis. In 
the 4T1 breast cancer model, irradiated MSCs promote 
lung metastasis. The cGAS–STING signalling pathway 
is activated in irradiated MSCs. Knockdown of cGAS–
STING signalling in MSCs abolished their prometastatic 
effect. Further analysis identified CCL5 as a downstream 
molecule. cGAS–STING pathway knockdown impaired 
CCL5 expression. Knockout of CCL5 in MSCs inhibited 
lung metastasis and  CCR5+ macrophage infiltration. This 
finding highlights the role of the cGAS–STING-CCL5 
pathway in metastasis [73].

Based on these results, CCL5 may indicate a 
worse prognosis in a specific context. A randomized 
phase 2 trial compared the efficacy of gemcitabine 
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to capecitabine-based chemoradiotherapy in locally 
advanced pancreatic cancer. Baseline plasma samples 
were collected to identify circulating biomarkers. It was 
found that higher baseline circulating levels of CCL5 
indicated worse overall survival [74].

CCL5 promotes antitumour immunity
CD8+ T cell infiltration after RT is pivotal for tumour 
control. However, in a radiation-resistant mouse model, 
RT did not induce  CD8+ T cell infiltration. CCL5 is 
involved in the recruitment of  CD8+ T cells, which 
has been confirmed in solid tumours [75]. Studies have 
shown that CCL5 expression is much higher in parental 
tumour tissue than in radioresistant tumour tissue [76]. 
This finding highlights the role of CCL5 in  CD8+ T cell 
infiltration.

Low  CD8+ T cell infiltration and high programmed 
death ligand 1 (PD-L1) expression in pancreatic cancer 
predicts poor outcomes. Radiation combined with vac-
cination upregulates the expression of the chemokines 
CXCL10 and CCL5 in the tumour, along with increased 
 CD8+ T cell infiltration. The use of anti-PD-L1 antibod-
ies further enhanced the efficacy of the combination [77]. 
AZD6738 is an ATR inhibitor that has been investigated 
in early phase clinical trials. AZD6738 combined with RT 
significantly improved the efficacy of radiation. Increased 
infiltration of  CD3+ and NK cells was observed in the 
tumour. In vitro and in vivo data demonstrated that ATRi 
plus RT promoted the production of CCL3, CCL5, and 
CXCL10 in tumour cells [78]. The released chemokines 
may contribute to the infiltration of antitumour immune 
cells. These results indicated that the presence of CCL5 
promotes antitumour immunity and predicts a better 
response to treatment.

CCL5 and radiation‑induced injury
As mentioned previously, CCL2 contributes to radia-
tion-induced EMT in HPAEpiC cells. CCL5 mediates 
this process, indicating that CCL5 may contribute to 
radiation-induced injury [42]. In human irradiated arter-
ies, the inflammasome-associated chemokines CCL2 
and CCL5 were elevated. In a mouse model of radiation-
induced injury, the same effect was observed. Treatment 
with the IL-1 receptor antagonist anakinra significantly 
reduced CCL2 and CCL5 levels in mice. This finding 
indicated that IL-1 blockade could be a treatment for RT-
induced vascular disease [79]. However, CCL5 not only 
contributes to radiation-induced injury but also protects 
normal tissue. Haematopoietic regeneration deficiency 
is a common side effect of RT. In mice with CCR5 defi-
ciency in haematopoietic cells, haematopoietic regen-
eration was delayed. Further investigation showed that 
CCL5 was an endothelial cell-secreted haematopoietic 

growth factor that could bind to CCR5 on haematopoi-
etic cells. CCL5 treatment accelerated haematopoietic 
regeneration. Mechanistically, CCL5 could promote 
haematopoietic cell cycling and survival [80]. These two 
experiments exhibited seemingly contrary results: CCL5 
exerted a protective effect on haematopoietic regenera-
tion, but in RT-induced cardiovascular disease, CCL5 
promoted injury. This difference may be due to the differ-
ent effects of CCL5 in different contexts. CCL5 binds to 
CCR5 on haematopoietic cells but not immune cells, thus 
promoting haematopoietic regeneration. In irradiated 
arteries, CCL5 may bind specific receptors on immune 
cells, thus promoting the development of inflammation.

CCL8
CCL8 is also known as MCP-2. CCL8 can bind to CCR1, 
CCR2, CCR3, and CCR5 [81]. The main function of 
CCL8 is to recruit monocytes to inflammatory sites. In 
addition, CCL8 can attract eosinophils and Tregs [82]. 
In tumours, CCL8 can promote cancer cell proliferation 
[83] and migration [84, 85]. The role of CCL8 in radia-
tion-related events is poorly understood. However, CCL8 
may participate in lung metastasis. In a Lewis lung can-
cer model, thorax irradiation with 5  Gy X-ray dramati-
cally increased the number of tumours in the lungs. The 
administration of nicaraven, a radioprotective agent, sig-
nificantly reduced the number of tumours in the lungs. 
Moreover, radiosensitivity was not affected by nica-
raven. Further investigation of the underlying mecha-
nism revealed that nicaraven effectively inhibited CCL8 
expression and macrophage recruitment [86]. Cranial 
irradiation can lead to cognitive impairments in patients 
with brain tumours. Radiation-induced inflammation 
may be the primary reason for these deficits. It has been 
reported that CCR2 is critical for macrophage traffick-
ing in the brain. Gene expression analysis revealed radia-
tion-induced gene expression of CCR2 ligands, including 
CCL8, in the hippocampus. CCR2 deficiency could 
reduce this induction and prevent hippocampus-depend-
ent spatial learning and memory impairments [47]. This 
protective effect may be attributed to decreased infiltra-
tion of macrophages attracted by CCL8. In human irra-
diated arteries, CCL8 is dysregulated. This effect may be 
attributed to NF-κB activation [61]. However, the direct 
role of CCL8 in radiation-induced cardiovascular disease 
still needs further investigation.

CCL11
CCL11 is a member of the eotaxin family and is also 
called eotaxin-1. CCL11 can recruit eosinophils by bind-
ing to the receptor CCR3 [7]. CCL11 is a ligand for CCR5 
[87]. CCR3 was shown to be expressed in tumour cells, 
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and activation of this receptor on cancer cells could 
increase proliferation and migration [88, 89]. Moreover, 
CCL11 could promote cancer cell apoptosis resistance 
[90] and angiogenesis [91]. A study showed that severe 
lung toxicity was associated with lower levels of eotaxin 
at 24  h after irradiation compared with that in patients 
who did not develop severe lung toxicity [92]. CCL11 
could be a predictive marker of liver toxicity [93]. High-
dose irradiation led to skin injury, and this effect was 
eosinophil-associated. Eosinophil-related Th2 cytokines, 
including CCL11, were upregulated in irradiated skin 
and HUVECs. Blocking IL-33 suppressed cytokine secre-
tion in a coculture system of THP-1 cells and irradiated 
HUVECs, indicating that IL-33 may be a key molecule 
that regulates this process [94]. Similarly, in the context 
of radiation-induced brain tissue damage, inflammation-
related genes, including CCL11, were strongly induced 
in endothelial cells [95]. In human dermal fibroblasts, 
the expression of eotaxin was upregulated by radiation, 
which may be an important step leading to eosinophilia 
in patients with radiation exposure [96]. Radiation-
induced intestinal fibrosis (RIF) is a serious complication 
after abdominal RT. Excessive eosinophil accumulation is 
associated with RIF in both humans and mice. Irradiation 
increases extracellular adenosine triphosphate, which 
induces the expression of CCL11 by pericryptal α-SMA+ 
cells. Eosinophil-deficient mice showed marked amelio-
ration of RIF. Blocking CCR3 by genetic deficiency or 
neutralizing antibodies suppressed eosinophil accumula-
tion after irradiation in mice, suggesting a role for eosin-
ophils in mice [97].

Other chemokines
CCL7 is involved in the anti-inflammatory response 
and antitumour immunity [98, 99]. In fibrosis-sensitive 
C57BL/6 mouse model, total lung RNA was extracted at 
26  weeks. CCL7 expression was upregulated, indicating 
a role in radiation-induced lung fibrosis [100]. CCL22 
and CCL17 play pivotal roles in various type-2 T helper 
cell-dominant diseases. In a rat model of radiation pneu-
monitis/pulmonary fibrosis, CCL22 and CCL17 were 
upregulated in irradiated lung tissues. CCL22 and CCL17 
were localized primarily to alveolar macrophages, as 
shown by immunohistochemistry. This finding indicated 
that macrophages are the primary producers of CCL22 
and CCL17. Similarly, bronchoalveolar lavage fluid from 
patients with idiopathic pulmonary fibrosis exhibited ele-
vated levels of CCL22. The corresponding receptor CCR4 
was detected on alveolar lymphocytes and macrophages 
[101]. Thus, CCL22 and CCL17 are released by alveolar 
macrophages and may act on  CCR4+ type-2  T helper 
cells and alveolar macrophages to promote pulmonary 
fibrosis. One of the biological functions of CCL20 is to 

attract immature DCs and lymphocytes to tissues. Inject-
ing pcDNA3.1/MIP-3α into LLC subcutaneous tumours 
after radiation significantly delayed tumour growth. The 
accumulation of DCs was observed in tumour tissues. 
The local infiltrating lymphocytes after the treatment 
were predominantly  CD8+ T cells [102]. Whole-body 
irradiation (WBI) depleted DCs in the epidermis and 
dermis. However, this effect was not due to DC apopto-
sis. Increased mRNA levels of CCL19/CCL21 and CCR7 
in lymph nodes and skin were observed after radia-
tion. CCR7 and its ligands CCL19/CCL21 mediate cDC 
migration to the draining lymph node. Thus, the radi-
ation-induced depletion of DCs was due to DC migra-
tion to the lymph node. In vitro experiments showed that 
the number of DCs that migrated to CCL19-containing 
medium increased, indicating that chemokines regulated 
the migration of DCs [103]. However, a study showed 
that γ-ray irradiation could significantly inhibit the pro-
duction of PEG2 and the expression of CCR7 induced by 
LPS. Eventually, the migration of DCs towards CCL19 is 
impaired in  vitro and in  vivo [104]. Low-dose RT (LD-
RT) is known to exert an anti-inflammatory effect. In 
a coculture system of the EC line EA.hy.926 and poly-
morphonuclear neutrophils (PMNs), irradiation with 
a low dose between 0.5 and 1  Gy resulted in a signifi-
cant reduction in CCL20 expression. Moreover, PMN/
EA.hy.926 EC adhesion was significantly decreased [105]. 
In nasopharyngeal carcinoma, CCL22 was significantly 
increased in patient-derived xenograft tumours or cell 
lines upon radiation. In serum collected from patients 
who received RT, this effect was confirmed. Further 
experiments revealed that CCL22 could recruit  CCR4+ 
CD8 T cells, which could enhance antitumour immu-
nity [106]. Radiation could induce CCL27 production 
in the human keratinocyte cell line HaCaT. This effect 
depended on crosstalk between TNF-α and ROS. CCL27 
production promotes skin immune and inflammatory 
reactions. However, the mechanism of CCL27 still needs 
investigation [107].

Conclusion
CC chemokines mainly exert chemotactic effects, 
attracting monocytes, DCs, and T lymphocytes, which 
are involved in inflammatory reactions and antivi-
ral effects. Radiation stimulates the production of 
these chemokines (Table  1). In this review, we mainly 
focused on the chemokines CCL2, CCL3, CCL5, CCL8, 
CCL11, CCL20, and CCL22. Multiple types of cells 
can produce CC chemokines, including tumour cells, 
endothelial cells, fibroblasts, and MSCs. The released 
chemokines bind to the corresponding receptors in 
an autocrine or paracrine manner. The most common 
effects of released chemokines were the recruitment of 
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immune cells, including lymphocytes, macrophages, 
neutrophils and eosinophils, to irradiated sites, which 
could form an inflammatory environment. In normal 
tissues, this recruitment usually leads to acute and late 
radiation side effects. Radiation-induced chemokines 
can be detected in serum and thus could be used as 
predictive biomarkers. However, the time at which to 
measure serum levels of specific chemokines may dif-
fer in different cancer types. The optimal cut-off val-
ues of the predictive chemokines need to be critically 
evaluated. Several studies have identified relevant fac-
tors that inhibit specific chemokines to alleviate radi-
ation-induced injury. This finding indicated that CC 
chemokines could be promising targets to inhibit the 
side effects of radiation. However, it should be noted 

that these strategies may influence the systematic 
inflammatory response, leading to serious side effects.

In tumour tissues, the infiltration of these immune 
cells, especially macrophages, can promote metasta-
sis or radioresistance. However, in some cases, anti-
cancer effector cells are recruited to facilitate tumour 
control. Some chemokines, such as CCL2 and CCL5, 
exert both protumour and antitumour effects. Thus, it 
is difficult to target these chemokines as a treatment 
strategy. The protective effects of specific chemokines 
have been reported, which could exert induce antitu-
mour immunity. To maximize the antitumour effects 
of chemokines, radiation doses, fractions or techniques 
should be taken into consideration. The patterns of 
chemokine release may differ in response to different 

Table 1 Chemokines in radiation response

Cell types Producer (stimulator) Recipient/signaling type (receptor) Physiological effects Reference

CCL2 Normal cell Human pulmonary AEC cells Autocrine (CCR4) Lung fibrosis [42]

Normal cell (Myo)fibroblasts Neutrophiles Liver damage [49]

Normal cell Irradiated brain(not specific) Microglial CNS injury [48]

Cancer cell A549, H157 Macrophage Tumor promoting [35]

Cancer cell Mouse pancreatic cancer cell lines Inflammatory monocytes and mac-
rophages

Radioresistance [36]

Cancer cell HT1080, MPNST724, SK-LMS1,SW684 Th1/Tc1 T cells Tumor control [38]

Cancer cell TC1 cells Monocytes and CCR2(+) regulatory 
T cells

Radioresistance [39]

Cancer cell MC38, LLC cells CCR2(+) MDSC Radioresistance [37]

Cancer cell CNE2, HONE1, SUNE2 cells Cancer cell Radioresistance, metastasis and 
epithelial-mesenchymal transition

[40]

CCL3 Normal cell Irradiated lung tissue (not specific) CCR1(+) CD4 and CD8 T cells, and 
macrophages

Radiation-induced lung injury [60]

Normal cell Human conduit arteries Not specific Cardiovascular disease after irradia-
tion

[61]

CCL5 Normal cell Human pulmonary AEC cells Autocrine (CCR4) Pulmonary fibrosis [42]

Normal cell Endothelial cells CCR5(+) hematopoietic cells Hematopoietic regeneration [80]

Cancer cell Eca109, Kyse150 cells Macrophages Cellular Metastasis [72]

Cancer cell Mesenchymal stem cells CCR5(+) macrophages Lung Metastasis [73]

Cancer cell A549, H157 cells Macrophage Tumor promoting [35]

Cancer cell B16 cells CD8+ T cell Tumor control [76]

CCL8 Normal cell Irradiated lung tissues (not specific) Macrophage Lung metastasis [86]

Normal cell Irradiated hippocampal (not specific) Not specific Cognitive impairments [47]

CCL11 Normal cell Pericryptal alpha-SMA(+) cells CCR3(+) Eosinophil Radiation-induced intestinal fibrosis [97]

Normal cell Irradiated skin Eosinophil Radiation-induced skin injury [94]

Normal cell Dermal fibroblasts Eosinophil Eosinophilia [96]

Normal cell Endothelial cells Not specific Radiation-induced brain tissue 
damage

[95]

CCL20 Cancer cell LLC cells DC, lymphocytes Tumor control [102]

CCL22 Normal cell Human NPC cell lines, patient-
derived tumor xenograft tumors

CCR4(+) CD8 T cell Tumor control [106]

Normal cell Irradiated lung tissues(not specific) Alveolar lymphocytes and alveolar 
macrophages

Radiation pneumonitis/pulmonary 
fibrosis

[101]
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doses or fractions. Both preclinical experiments and 
clinical trials are needed to confirm the optimal doses 
to boost antitumoural chemokines.

Although the role of chemokines in radiation is com-
plex, investigation of the responses of the chemokines to 
RT may lead to the development of novel treatments.
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