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Abstract 

Background  To explore the dosimetric difference between IMRT-VB plan based on the establishment of external 
expansion structure and virtual bolus (VB) and IMRT-SF based on the skin flash (SF) tool of the Eclipse treatment plan-
ning system in postoperative chest wall target intensity modulation radiotherapy plan of breast cancer.

Methods  Twenty patients with breast cancer were randomly selected as subjects to develop IMRT-VB plan based 
on virtual bolus and IMRT-SF plan based on skin flash tool of Eclipse treatment planning system. The planning target 
volume, monitor unit (MU) of every single treatment and the dosimetric parameters of organ at risk (OARs) were 
recorded. Paired t-test was used for normal distribution data while nonparametric paired Wilcoxon rank sum test was 
used for non-normal distribution data.

Results  Both IMRT-VB and IMRT-SF plan can expand outward to the chest wall skin and meet the dose requirements 
of clinical prescription. The conformal index, the homogeneity index, D2%, D98% and D50% were significantly better in 
IMRT-SF plan than those in IMRT-VB plan (P < 0.05). The average MU of the IMRT-SF plan was much higher than that of 
the IMRT-VB plan (866.0 ± 68.1 MU vs. 760.9 ± 50.4 MU, P < 0.05). In terms of organ at risk protection, IMRT-SF plan had 
more advantages in the protection of ipsilateral lung and spinal cord than IMRT-VB plan (P < 0.05).

Conclusion  Our study indicated that IMRT-SF plan displayed clinical application superiority compared to IMRT-VB 
plan, and the operation steps of which are simpler and faster. Besides, IMRT-SF plan took advantages in achieve effec-
tive external expansion of skin dose intensity and OARs protection.
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Background
Since the low-density lung tissue was in the irradiation 
area, the homogeneity index (HI) of traditional three-
dimensional conformal radiotherapy is as high as 20% in 
the radiotherapy of breast cancer patients [1, 2]. Inten-
sity modulated radiotherapy (IMRT) has been widely 
used in breast cancer radiotherapy recently. Compared 
with the traditional three-dimensional conformal radio-
therapy, IMRT had obvious superiority in the uniform-
ity and conformal degree of the target volume, as well 
as the protection of organs at risk. However, the target 
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volume of the chest wall extends beyond the skin due 
to the movement of organs such as breathing and heart-
beat [3, 4]. The existing radiotherapy planning system 
does not calculate the dose distribution outside the outer 
contour (that is, the skin), which was defaulted as zero-
dose area. Although previous studies have reported two 
kinds of dose intensity expansion methods [5, 6], one is 
IMRT-VB plan based on virtual bolus (VB), the other is 
IMRT-SF based on the skin flash (SF) tool of the Eclipse 
treatment planning system, there were few reports on 
the application of these two dose expansion methods in 
postoperative chest wall IMRT planning of breast cancer. 
Here, by employing two different expansion methods in 
20 patients with left breast cancer, we found that both 
IMRT-VB and IMRT-SF plan can expand outward to the 
chest wall skin and meet the dose requirements of clinical 
prescription. The conformal index (CI), the homogeneity 
index (HI), D2%, D98% and D50% were significantly better 
in IMRT-SF plan than those in IMRT-VB plan (P < 0.05). 
The average MU of the IMRT-SF plan was much higher 
than that of the IMRT-VB plan (866.0 ± 68.1 MU vs. 
760.9 ± 50.4 MU, P < 0.05). In terms of organ at risk pro-
tection, IMRT-SF plan had more advantages in the pro-
tection of ipsilateral lung and spinal cord than IMRT-VB 
plan (P < 0.05). Taken together, our study indicated that 
IMRT-SF plan displayed clinical application superiority 
compared to IMRT-VB plan, and the operation steps of 
which are simpler and faster. Besides, IMRT-SF plan took 
advantages in achieve effective external expansion of skin 
dose intensity and OARs protection.

Methods
Human samples
Participant were a total of 20 patients with left breast 
cancer (pT3-4N0M0) who received postoperative radio-
therapy in the Radiotherapy Center of Integrated Hospi-
tal of Traditional Chinese Medicine at Southern Medical 
University during August 2020 to December 2021. All 
patients were female, aged from 35 to 62 years old, with 
an average age of 50.40 ± 9.59 years old.

CT simulation and target delineation
All patients were in supine position, with upper limbs 
abduction and arms crossed in front of forehead. The 
negative pressure vacuum pad was used for body posi-
tion fixation. Patients were asked to maintain a steady 
breathing state during CT scanning. The upper boundary 
of CT scanning is at the level of cricothyroid membrane, 
the lower boundary is 5 cm below the fold of the lower 
edge of the breast with 0.5 cm scanning thickness. Philips 
Brilliance CT Big Bore was used to perform conventional 
CT simulation positioning scanning, with scanning slice 

thickness and slice spacing of 0.5  cm and resolution of 
512 × 512.

The radiologist delineated the clinical target volume 
(CTV) of the chest wall according to the ICRU83 report 
and White J’s research [7, 8]. The planning target vol-
ume (PTV) expanded 5 mm on the basis of CTV, and the 
inner and posterior boundary was not allowed to extend 
to the lung [9]. The anterior boundary retracted in the 
subcutaneous 3 mm to form a structure named PTV_eval 
[10]. This PTV-eval is limited anteriorly to exclude the 
part that extends outside the body/patient and the first 
3 mm of tissue under the skin in order to remove some 
of the buildup region for the DVH analysis. At the same 
time, heart, left lung, right lung, spinal cord and other 
organs at risk should be delineated. All the target areas 
and organs at risk were sketched by the same radiologist, 
and the prescription dose of PTV was 50 Gy/25F.

Treatment planning
The Eclipse13.6 planning system was used to estab-
lish the IMRT-VB plan based on the establishment of 
external expansion structure and virtual bolus (VB), 
and the IMRT-SF plan based on the skin flash (SF) tool 
of the Eclipse treatment planning system. The accelera-
tor is Varian Clinic X, 6MV energy X-ray, the dose rate 
is 400MU/min, and the dose is calculated by analyti-
cal anisotropic algorithm (AAA), along with a grid size 
of 0.25  cm used for dose distribution computation. The 
intensity modulation plan of 8 fields was selected in 
both groups, and the field angle was based on a pair of 
tangent fields of breast target. In addition, 3 pairs of aux-
iliary tangent fields were added within the tangent field 
at an interval of 5–10° to form an intensity modulation 
plan of 8 fields. To better protect the normal tissue from 
exposure, the fixed jaw technique was used in the opti-
mization of the plan [11], the field arrangement was set 
as previous reported [12]. Schematic diagram of IMRT-
VB and IMRT-SF plan designed for patients was shown 
in Fig. 1.

IMRT-VB plan: Firstly, a 1.0  cm outer contour exten-
sion bolus was added to the breast part of the Body, and 
the CT value of the outer contour extension area was 
specified as 0HU. A new outer contour (“Body + bolus”) 
was generated by Boolean (union) operation between the 
original outer contour Body and the 1 cm virtual bolus. 
Then, a “PTV + 0.5” structure was generated by putting 
the PTV 0.5  cm outward toward the thorax. The angle 
layout of the radiation field was completed according to 
the above field layout principles. At the same time, fixed 
jaw techniques were used, and PTV and “PTV + 0.5” 
structures were simultaneously used as the target 
area optimization targets for flux optimization. After 
the flux optimization was completed and the clinical 
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requirements were met, the virtual bolus was removed 
and the outer contour was reset to the original outer con-
tour Body. The optimized radiation field flux was main-
tained for dose calculation. Therefore, the IMRT-VB plan 
for dose intensity expansion was obtained.

IMRT-SF Plan: The ‘Skin flash’ tool was a brush tool 
that extends the dose in the form of dose intensity pro-
jected at the inner edge of the field beyond the skin in the 
Beam Eyes View (BEV). The angle distribution and fixed 
jaw techniques of the radiation field were consistent with 
the IMRT-VB plan, and the PTV structure was taken as 
the target area optimization targets. After the flux opti-
mization was completed and the clinical requirements 
were met, the ‘Skin flash’ tool in the Eclipse13.6 planning 
system was used to expand the skin flux of 0.5 cm in the 
chest wall target area of all the fields and then the dose 
distribution was calculated, and then the IMRT-SF plan 
was obtained.

Plan evaluation and analysis
Dose volume histogram (DVH) was used to evaluate the 
exposure dose of target area and organ at risk. In the era 
of IMRT technology, the ICRU83 report recommends 
the use of IMRT technology, and the evaluation of the 
target no longer pays too much attention to the reported 
minimum and maximum dose points, but to the D98% and 
D2% indicators of the recommended target. Therefore, 
the specific parameters evaluated in this study include 
high-dose flat area (D2%), low-dose flat area (D98%), aver-
age dose (D50%), conformity index (CI) and homogeneity 

index (HI). The calculation formulas of CI and HI were as 
follows:

wherein, Vt,ref  means the volume covered by the prescrip-
tion dose, Vt means the target volume, Vref  means the vol-
ume covered by the prescription dose in the target area, 
D2%, D98%, D50% represent the radiation dose received by 
2%, 98% and 50% of the volume of the target, respectively. 
The closer the CI value is to 1, the better the dose suit-
ability of the target area is; the closer the HI value is to 
0, the more uniform the dose in the target area is. The 
evaluation parameters of organs at risk include V5%, 
V10%, V20%, V30% and Dmean of the left lung, V5%, V10% 
and Dmean of the right lung, V5% and Dmean of the heart, 
and Dmax of the spinal cord.

Plan verification
The flux of each beam of the two technology plans was 
collected by using the Portal Dosimetry function of the 
Clinac iX linear accelerator of Varian Company of the 
United States. Gamma analysis, a widely used method 
for evaluating relative dose contribution [13], was carried 
out using the standard of 3 mm/2%, and the passing rate 
was verified by statistical dose.

(1)CI =
V 2
t,ref

Vt × Vref

(2)HI =
D2% − D98%

D50%

Fig. 1  Schematic diagram of IMRT-VB and IMRT-SF plan designed for patients



Page 4 of 7Tang et al. Radiation Oncology           (2023) 18:23 

Statistical analysis
The dosimetry parameters were analyzed by IBM 
SPSS25.0. The hypothesis test data were used to analyze 
whether it conformed to the normal distribution. The 
normal distribution data were shown as mean ± SD, and 
the non-normal distribution data were shown as M (Q1, 
Q3). Paired t-test was performed for normal distribution 
data analysis and nonparametric paired Wilcoxon rank 
sum test was used for non-normal distribution data anal-
ysis. P < 0.05 was considered as statistically significant.

Results
Target dose comparison
As shown in Table  1, the dosimetric indexes of CI, HI, 
D2%, D98% and D50% of IMRT-SF plan were significantly 
better than those of IMRT-VB plan (P < 0.05). In terms 
of monitor unit (MU), the average MU of the IMRT-SF 
plan was much higher than that of the IMRT-VB plan 
(866.0 ± 68.1 MU vs. 760.9 ± 50.4 MU, P < 0.05).

Comparison of organs at risk
As shown in Table  2, compared with IMRT-VB plan, 
IMRT-SF plan had better dosimetric advantages in V10%, 
V20%, V30%, Dmean of left lung (P < 0.05). Moreover,

IMRT-SF plan exhibited better spinal cord protection 
than IMRT-VB plan (P = 0.003).

Besides, IMRT-SF plan showed comparable data in 
heart V5% (P = 0.442), Heart Dmean (P = 0.591), V5% 
of left lung (P = 0.799) and V5%, V10%, Dmean of right 
lung relative to IMRT-VB plan (P = 0.635, 1.000, 0.213, 
respectively).

Patient‑specific QA results
As shown in Figs.  2 and 3, the result showed that the 
gamma passing rate of IMRT-SF plan was 99.16 ± 0.54%, 
and that of IMRT-VB plan is 99.48 ± 0.46%. The passing 
rate of IMRT-SF plan is slightly lower than that of IMRT-
VB plan (t = − 9.798, P < 0.0001).

Discussion
Many studies have shown that the intensity modu-
lated radiotherapy (IMRT) mainly in the tangent field 
of postoperative radiotherapy of breast cancer, can not 
only improves the dose uniformity, but also reduces the 

Table 1  Comparison of target dosimetry and MUs between two 
plans (x ± s)

Parameter IMRT-SF IMRT-VB t-stat P-value

CI 0.83 ± 0.03 0.68 ± 0.04 19.618 < 0.01

HI 0.07 ± 0.004 0.16 ± 0.01 − 26.010 < 0.01

D2%/cGy 5315.7 ± 20.1 5663.9 ± 34.3 − 30.826 < 0.01

D98%/cGy 4966.2 ± 9.3 4805.5 ± 52.0 9.822 < 0.01

D50%/cGy 5163.1 ± 13.5 5394.3 ± 25.3 − 31.262 < 0.01

MU 866.0 ± 68.1 760.9 ± 50.4 6.645 < 0.01

Table 2  Comparison of dosimetry of OARs between two plans (x ± s)/M(Q1,Q2)

Parameters IMRT-SF IMRT-VB t/z-stat P-value

Left lung V5/% 44.60 (43.53, 49.13) 44.75 (42.98, 48.93) − 0.255 0.799

Left lung V10/% 30.72 ± 3.21 31.39 ± 2.99 − 2.831 0.02

Left lung V20/% 19.10 ± 1.91 19.64 ± 1.78 − 5.576 < 0.001

Left lung V30/% 12.86 ± 1.52 13.70 ± 1.56 − 7.517 < 0.001

Left lung Dmean/cGy 1047.78 ± 83.38 1097.28 ± 77.94 − 8.016 < 0.001

Right lung Dmean/cGy 109.94 ± 38.15 108.20 ± 35.71 1.341 0.213

Heart V5/% 34.14 ± 4.81 33.52 ± 4.64 0.804 0.442

Heart Dmean 631.25 ± 80.07 635.76 ± 86.82 − 0.558 0.591

Cord Dmax/cGy 48.17 ± 6.08 48.78 ± 6.01 − 3.966 0.003

Right lung V5/% 2.30 (1.25, 3.43) 2.40 (0.93, 3.38) − 0.475 0.635

Right lung V10/% 0 (0.00, 0.00) 0 (0, 0.10) 0.000 1.000

Fig. 2  Flux map of actual collection of EPID of two plans for the same 
patient, a IMRT-SF plan, b IMRT-VB plan
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radiation dose to the lung, spinal cord and other organs 
at risk [14, 15]. In order to compensate for the target area 
movement caused by organ movement and positioning 
errors, the target area of breast cancer generally expands 
CTV by 5–10 mm as PTV, which makes the PTV in the 
chest wall area expand directly outside the body. Since 
the photon dosimetry possess the characteristics of dose 
building area, the IMRT plan optimization process will 
continuously increase the dose of the skin and the area 
outside the skin, resulting in unreasonable optimization 
results and even failed plan. In response to the above 
problems, the ICRU 62 report and other scholars have 
proposed some relevant solutions [5, 16, 17]. Sankar et al. 
[2] used the ‘skin flash’ tool of Varian eclipse planning 
system for dose expansion to effectively exteriorize skin 
flux to meet clinical therapeutic requirements. Consist-
ent with previous studies reported by Chopra [18] and 
Morrow [19], the flux optimization results of the IMRT-
VB and IMRT-SF plans in this study have realized the 
dose intensity expansion of 0.5  cm towards the thorax, 
which effectively solves the problem of insufficient dose 
and off-target effects in the chest wall target area caused 
by respiratory movement.

Patients with breast cancer undergoing postoperative 
radiotherapy may miss the target in the actual treatment 
process due to the thickness of their chest wall and res-
piratory motility, leading to insufficient actual radiation 
dose to the target area of the chest wall [20, 21]. In this 
study, for patients receiving chest wall target radiother-
apy, two different dose intensity expansion methods of 
radiotherapy plans were designed using eight field IMRT 

technology with tangent field. The conformal index 
(CI), the homogeneity index (HI), D2%, D98% and D50% 
were significantly better in IMRT-SF plan than those in 
IMRT-VB plan (P < 0.05). The average MU of the IMRT-
SF plan was much higher than that of the IMRT-VB plan 
(866.0 ± 68.1MU vs. 760.9 ± 50.4MU, P < 0.05). In terms 
of organ at risk protection, IMRT-SF plan had more 
advantages in the protection of ipsilateral lung and spinal 
cord than IMRT-VB plan (P < 0.05). However, default val-
ues of the "Skin flash" tool were adopted in the IMRT-SF 
plan, whether the adjustment of the default parameters 
has an impact on the total monitor unit needs to be fur-
ther studied. Giorgia et al. [22] assigned soft-tissue equiv-
alent HU to its artificial expansion. According Giorgia N’s 
research, the virtual bolus was specified as 0 HU in our 
IMRT-VB plan as it is much closer to human muscle and 
adipose tissue. However, Ugurlu et  al. [23] specified the 
HU value of virtual bolus as − 700, while Thilmann et al. 
[24] specified the HU as −  60. Since there were differ-
ent choice of the HU values of the virtual bolus, the most 
appropriate HU value needs to be further explored and 
whether the changes of the HU value would affect the 
total monitor units still needs to be further studied.

It has been reported that adding effective bolus can 
increase the skin surface dose of photon rays with 6MV 
energy from 10 to 40% to nearly 100% [25]. However, 
for patients with no skin invasion, the skin surface dose 
level does not need to reach the 100% dose level. Once 
the bolus is added, it may aggravate acute skin injury, 
interrupt the treatment, and then increase the risk of 
chest wall recurrence. Studies [26, 27] found that bolus 

Fig. 3  For the 3%/2 mm evaluation criteria, gamma passing rate
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was unable to reduce the recurrence rate of chest wall 
and improve the survival rate. Lizondo [3] found that 
a 1 cm bolus thickness equal to the CTV-PTV margin 
plus 5 mm. Therefore, in our study, the IMRT-VB plan 
uses a 1 cm virtual bolus to achieve the purpose of dose 
intensity expansion, and the virtual bolus is removed 
in the final dose volume calculation stage, which could 
not only achieve the purpose of dose intensity expan-
sion, but also has a certain protective effect on the skin. 
Even so, the dose level (D2%) of IMRT-VB plan in the 
high dose hot zone of the target area is still slightly 
higher than that of IMRT-SF plan. The AAPM TG218 
report [28] pointed out that it is too sweeping to adopt 
a dose distance error standard of 3%/3  mm γ analy-
sis criteria in the clinical IMRT plan validation analy-
sis. Therefore, the more critical γ Analytical standard 
(3%/2  mm) was employed in our study. Although the 
experimental results show that the γ passing rate of 
99.16 ± 0.54% in IMRT-SF plan is slightly lower than 
that of 99.48 ± 0.46% in IMRT-VB plan (t = −  9.798, 
P < 0.0001), the gamma passing rate both exceeded 95%, 
indicating that both plans met the clinical treatment 
requirements. Although this study revealed the dosi-
metric effects of IMRT-SF and IMRT-VB dose expan-
sion methods on target area irradiation of chest wall 
and organs at risk after breast cancer surgery, there are 
still some limitations, research samples amplification 
and multi-center validation were needed for further 
exploration.

Conclusion
In general, our study indicated that IMRT-SF plan dis-
played clinical application superiority compared to 
IMRT-VB plan, and the operation steps of which are 
simpler and faster. Besides, IMRT-SF plan took advan-
tages in achieve effective external expansion of skin 
dose intensity and OARs protection.
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