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Abstract 

Background Glioblastoma (GBM) cellularity correlates with whole brain spectroscopic MRI (sMRI) generated relative 
choline to N-Acetyl-Aspartate ratio (rChoNAA) mapping. In recurrent GBM (rGBM), tumor volume (TV) delineation is 
challenging and rChoNAA maps may assist with re-RT targeting.

Methods Fourteen rGBM patients underwent sMRI in a prospective study. Whole brain sMRI was performed to 
generate rChoNAA maps. TVs were delineated by the union of rChoNAA ratio over 2 (rChoNAA > 2) on sMRI and 
T1PC. rChoNAA > 2 volumes were compared with multiparametric MRI sequences including T1PC, T2/FLAIR, diffusion-
restriction on apparent diffusion coefficient (ADC) maps, and perfusion relative cerebral blood volume (rCBV).

Results rChoNAA > 2 (mean 27.6 cc, range 6.6–79.1 cc) was different from other imaging modalities (P ≤ 0.05). Mean 
T1PC volumes were 10.7 cc (range 1.2–31.4 cc). The mean non-overlapping volume of rChoNAA > 2 and T1PC was 29.2 
 cm3. rChoNAA > 2 was 287% larger (range 23% smaller–873% larger) than T1PC. T2/FLAIR volumes (mean 111.7 cc, 
range 19.0–232.7 cc) were much larger than other modalities. rCBV volumes (mean 6.2 cc, range 0.2–19.1 cc) and ADC 
volumes were tiny (mean 0.8 cc, range 0–3.7 cc). Eight in-field failures were observed. Three patients failed outside 
T1PC but within rChoNAA > 2. No grade 3 toxicities attributable to re-RT were observed. Median progression-free and 
overall survival for re-RT patients were 6.5 and 7.1 months, respectively.

Conclusions Treatment of rGBM may be optimized by sMRI, and failure patterns suggest benefit for dose-escalation 
within sMRI-delineated volumes. Dose-escalation and radiologic-pathologic studies are underway to confirm the util-
ity of sMRI in rGBM.
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Background
Standard of care for primary glioblastoma (GBM) con-
sists of maximally safe surgical resection followed by con-
current chemoradiation and adjuvant chemotherapy [1, 
2]. Despite these therapies, GBM carries a poor prognosis 
with a median survival of approximately 16–21  months 
[3]. There is significant interest in escalating radiotherapy 
(RT) dose in GBM to improve control, but targeting is 
limited by conventional MRI [4]. For example, T1 post-
contrast (T1PC) enhancement only identifies the highest 
density tumor with neovascularization. Meanwhile, T2 
Fluid Attenuated Inversion Recovery (T2/FLAIR) hyper-
intense volumes are non-specific and can correspond to 
gross tumor without neovascularization, areas of cellular 
infiltration disrupting normal brain architecture, benign 
vasogenic edema, leukoencephalopathy, or other changes 
[5]. Microscopic GBM infiltration can also extend out-
side of the FLAIR changes [6, 7].

Alternatively, spectroscopic MRI (sMRI) is an emerging 
technique performed with standard 3  T MRI hardware 
that maps certain endogenous compounds within a high 
percentage of the human brain without injected con-
trast [8]. Visualized metabolites include choline (Cho), 
a neuronal cell membrane component often elevated 
in actively dividing tumors [9, 10]. N-Acetyl-Aspartate 
(NAA) is an intermediary in many neuronal metabolic 
processes but is decreased with neuronal dysfunction or 
replacement [11]. Cho:NAA ratio was found to best cor-
relate to GBM cellularity on targeted biopsies compared 
to other MRI metrics [7]. A relative Cho:NAA ratio > 2 
(rChoNAA > 2) normalized to contralateral white matter 
was found to best predict for presence of tumor, correlate 
with worse survival, and earlier recurrence [12–14].

These findings led to a multi-institutional pilot study 
using sMRI integrated into an RT planning workflow to 
guide radiotherapy dose escalation [15]. Thirty patients 
with newly-diagnosed GBM were treated using a simul-
taneous integrated boost (SIB) technique to a total 
dose of 75 Gy to the union of residual T1 post contrast 
(TIPC) enhancement and the rChoNAA ≥ 2 along with 
concurrent temozolomide (TMZ) [16]. Compared with 
historical data, the study showed favorable outcomes 
with a median OS of 23.0  months and a median PFS 
of 16.6  months. The toxicity profile was also accept-
able, with most toxicity attributed to TMZ. The French 
SPECTRO-GLIO trial is also actively exploring the use of 
rChoNAA > 2 to delineate target volumes for dose escala-
tion in the first-line setting [17].

Accurate target delineation in recurrent GBM (rGBM) 
is more challenging because of confounding effects from 
the primary treatment. For example, radiation-induced 
leukoencephalopathy or benign vasogenic edema can 
greatly exaggerate T2/FLAIR hyperintense volumes while 

radiation necrosis can mimic active disease on T1PC 
[18]. This volume uncertainty and fear of large volume re-
irradiation (re-RT) toxicity in rGBM leads to gross tumor 
volume (GTV) based only on T1PC imaging with limited 
or no clinical target volume (CTV) [19–21]. Preliminary 
results from RTOG 1205 have identified a borderline 
progression free survival benefit to re-irradiation when 
added to bevacizumab, which suggests that improve-
ments in re-irradiation could enhance survival [21].

Given the challenges of target delineation of rGBM 
for re-RT and the known utility of sMRI for first-line 
rGBM RT targeting, we hypothesized that rChoNAA 
would reveal clinically meaningful volumes of rGBM not 
detected with standard MRI. Improvements in rGBM 
definition by sMRI could lead to more accurate re-RT 
fields and lead to dose escalation trials for the highest risk 
areas.

Methods
Patient selection and characteristics
We analyzed 14 sequential rGBM patients who under-
went sMRI. Patients were included if they had a patho-
logic diagnosis of glioblastoma (based on 2016 WHO 
criteria) or cIMPACT-NOW update 3 criteria for molec-
ular features of glioblastoma, received one course of con-
ventionally fractionated RT as part of combined modality 
treatment as first line treatment, and had multi-discipli-
nary consensus agreement for disease progression [22, 
23]. Such consensus was based on progression of enhanc-
ing disease meeting at least one criteria: outside a prior 
treatment field, positive relative cerebral blood volume 
(rCBV) on perfusion MRI, increased 18FDG uptake on 
18FDG-PET, or repeat resection or biopsy demonstrating 
GBM.

Image acquisition and target delineation
MRI and MRSI data were acquired at 3 T (Siemens Medi-
cal Solutions, Erlangen, Germany). T1-weighted imaging 
was carried out using a 3D Magnetization Prepared Rapid 
Acquisition Gradient Echo sequence with 0.9 × 0.9 × 0.7 
 mm3 resolution; TR/TE/TI = 2300/2.41/930 ms; flip angle 
9°; and image matrix 320 × 216 × 192. The protocol also 
included fluid-attenuated inversion recovery (FLAIR) 
(TR/TE = 9000/106 ms, resolution = 0.36 × 0.36 × 3  mm3, 
flip angle = 120°), and T2-weighted (TR/TE = 4810/76 ms, 
resolution = 0.45 × 0.45 × 3  mm3, flip angle = 160°) images 
and DTI acquired with TR/TE of 6300/99 ms and a reso-
lution 1.5 × 1.5 × 3  mm3. Diffusion-sensitizing gradient 
encoding with diffusion weighting factor of b = 1000  s/
mm2 was applied in 30 directions along with 9 averages 
for b = 0 s/mm2 (B0).

Whole brain sMRI was acquired using a spatial-spec-
tral echo-planar readout with spin-echo excitation; TR/



Page 3 of 8Bell et al. Radiation Oncology           (2023) 18:37  

TE = 1551/50.0  ms; non-selective lipid inversion-nulling 
with TI = 198  ms; a field-of-view 280 × 280 × 180  mm3; 
matrix size 50 × 50 × 18 slices with elliptical k-space 
encoding; echo train length of 1000 points; bandwidth 
of 2500 Hz. The acquisition time was 15 min. Data was 
acquired using spatial oversampling with a nominal voxel 
volume of 0.313 cc [24, 25]. Post-processing resulted in a 
working voxel size of 4.4 mm × 4.4 mm × 5.6 mm.

sMRI and non-contrast T1 sequences were converted 
into co-registered spatial-spectral data using the MIDAS 
software suite (University of Miami, Miami, FL) [25]. 
Residual contrast-enhancing volumes (T1PC volumes) 
were derived from the post-contrast T1-weighted imag-
ing, which was outlined semi-automatically. Volumes 
corresponding to rChoNAA > 2 were identified as regions 
within the gross tumor region that had a Cho/NAA ratio 
greater than 2.0 relative to the mean of the Cho/NAA 
value in contralateral white matter [7, 26]. These rCho-
NAA > 2 and T1PC volumes were transferred to MIM for 
radiation contouring (MIM Software Inc; Beachwood, 
OH). A composite GTV was created as a union of rCho-
NAA > 2 on sMRI, T1PC enhancement, and resection 
cavity (if present) and expanded 3 mm to CTV (Fig. 1).

Recurrent glioblastoma management
After imaging completed, patients and physicians were 
given the discretion as to whether to use the acquired 
data for therapy. Eleven of 14 patients decided to pro-
ceed with re-RT, and these cases were treated with the 
CTV as described above. Radiation doses of 35 Gy in 10 
fractions were delivered either by intensity-modulated 
proton therapy (CTV with robustness 3  mm geometric 

uncertainty and 3.5% range uncertainty) or intensity-
modulated photon RT (prescribed to CTV with addi-
tional 3 mm planning target volume). Nine of 11 patients 
received concurrent bevacizumab at 10  mg/kg every 
2  weeks until progression or intolerance. Patients were 
seen for follow-up every 2  months thereafter with mul-
tiparametric MRI including T1PC, T2/FLAIR, rCBV, 
and apparent diffusion coefficient. Maximum allowed 
doses to 0.03  cc of the brainstem and optic structures 
were < 30 Gy and < 24 Gy, respectively.

Patterns of failure analysis
Recurrence after re-RT was defined as described in the 
patient selection criteria, or, in the case of indeterminate 
imaging findings, a combination of imaging and evidence 
of clinical progression. If still unclear, cases were individ-
ually reviewed in a multidisciplinary oncology setting. In-
field recurrences were defined as disease within the CTV. 
Marginal recurrences were defined as disease within 
2 cm of the CTV but not within the CTV. T1PC failure 
was defined as a recurrence within the rChoNAA > 2 vol-
ume but not in the T1PC volume.

Statistics
One-way ANOVA with multiple comparison tests was 
performed to evaluate volumetric differences between 
the varying imaging modalities. Actuarial analyses were 
performed via Kaplan–Meier methods. All statistics were 
performed in GraphPad Prism version 9.3.1 for PC (San 
Diego, CA).

Fig. 1 Whole brain sMRI workflow and contour generation. Following surgical resection, a diagnostic MRI was obtained, and the residual 
post-contrast enhancing volume and cavity were contoured (T1PC + cavity). Whole brain sMRI was performed and co-registered to the diagnostic 
MRI. rChoNAA > 2 maps were generated using the MIDAS software and contoured in the treatment planning software. The GTV was defined as the 
union of the T1PC + cavity and the rChoNAA > 2 map. CTV (3 mm) and PTV (3 mm) expansions were then generated
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Results
Patient baseline demographics
Median age of patients was 51.5 years old (Table 1). Most 
patients were IDH wildtype (79%) and MGMT non-
hypermethylated (71%). Most patients had some level 
of residual disease after their primary surgery (64.3%) 
and patients had a median of 2 progressions prior to 
study. Just over 35% of patients had Eastern Coopera-
tive Oncology Group (ECOG) performance scores of 2 or 
more. Median time from diagnosis was 13.8 months, and 
median time from last day of radiation treatment as part 
of trimodality therapy was 11.5 months.

Volumetric analyses
rChoNAA > 2 volumes (mean 27.6 cc, range 6.6–79.1 cc) 
were significantly different from all other imaging modal-
ities (Fig. 2). T1PC volumes had a mean of 10.7 cc (range 
1.2–31.4 cc). The mean overlapping and non-overlapping 
volumes of rChoNAA > 2 and T1PC were 4.9  cc (range 
1.1–15.7 cc) and 29.2 cc (range 4.7–79.1 cc), respectively. 
rChoNAA > 2 volumes were 287% larger (range 23% 
smaller to 873%) than T1PC on a per patient basis. Mean 
T2/FLAIR volumes were much larger than all other 
modalities at an average of 111.7 cc (range 19.0–233.7 cc). 
In comparison, rCBV (mean 6.2  cc, range 0.2–19.1  cc) 

and ADC volumes (mean 0.8  cc, range 0–3.7  cc) were 
miniscule.

Example patient contours show rChoNAA > 2 volume 
was 70.0 cc (Fig. 3A), much larger than the T1PC volume 
of 7.2 cc (Fig. 3B). T2/FLAIR volumes were much larger 
than all other modalities at 164.9 cc (Fig. 3C). rCBV vol-
umes (7.6 cc) were similar to T1PC, but the regions delin-
eated were unhelpful for target volume identification 
(Fig. 3D). Similarly, ADC maps were unhelpful for target 
delineation (Fig.  3E). For a second example patient, the 
rChoNAA > 2 volume was 37.9 cc (Fig. 3F), much larger 
than the T1PC volume of 4.6 cc (Fig. 3G). T2/FLAIR vol-
umes were the largest at 93.5 cc (Fig. 3H). Again, rCBV 
(Fig.  3I) and ADC maps (Fig.  3J) were very small com-
pared to rChoNAA > 2.

Patterns of failure
Of the 14 patients scanned, 11 received re-RT. Reasons 
for not proceeding with re-RT were rapid performance 
status decline and hospice (n = 2) or patient preference 
for systemic therapy (n = 1). For these 11 patients, median 
follow-up was 8.0 months (range 4.9–16.3 months). Out 
of the 11 patients, 8 failed in-field. Three out of the eight 
in-field failures were outside the T1PC delineated GTV, 
but within the rChoNAA > 2 delineated GTV (Fig.  4). 
Median survival time was 7.1  months and median pro-
gression-free survival was 6.5 months (Fig. 5). No grade 
3 or higher toxicity were observed that were probably or 
definitely related to RT.

Table 1 Baseline patient characteristics

Characteristic n (%)

Age (median, years) 51.5

Gender

 Male 5 (36)

 Female 9 (64)

IDH status

 Wildtype 11 (79)

 Mutant 3 (21)

MGMT status

 Not hypermethylated 10 (71)

 Hypermethylated 3 (21)

 Indeterminant 1 (7)

Resection status

 Gross total resection 5 (36)

 Subtotal resection 7 (50)

 Biopsy only 2 (14)

ECOG performance status

 0 5 (36)

 1 4 (29)

 2 2 (14)

 3 3 (21)

Number of recurrences (median) 2

Months from diagnosis (median) 13.8

Months from first RT start (median) 11.5

Fig. 2 Volumes of contrasting imaging modalities. Comparison of 
the rChoNAA > 2, T1PC, T2/FLAIR, rCBV, and ADC volumes from 14 
patients with recurrent GBM. Repeated measures one-way ANOVA 
with multiple comparisons shows significant differences between 
rChoNAA > 2 volume and other volumes. Box-and-whisker plots 
display the maximum, 75th percentile, mean, 25th percentile, and 
minimum: *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001
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Fig. 3 Example patients in selected axial slice and representative 3-dimensional volumetric contour. A–E. Example contours for patient with 
rGBM show rChoNAA > 2 volume, T1PC volume, T2/FLAIR volume, rCBV volume, and ADC volume. Pink contours indicate the areas of rChoNAA > 2, 
contrast enhancement, FLAIR hyperintensity, rCBV elevation, and diffusion restriction. F–J Example contours from a separate patient with rGBM 
shows rChoNAA > 2 volume, T1PC volume, T2/FLAIR volume, rCBV volume, and ADC volume. Pink contours indicate the areas of rChoNAA > 2, 
contrast enhancement, FLAIR hyperintensity, rCBV elevation, and diffusion restriction. I: inferior, L: left, P: posterior, R: right, S: superior, mL: milliliter

Fig. 4 Two patients with recurrence within rChoNAA > 2 but outside of T1 post-contrast delineated GTV. A Axial pre-treatment T1PC from patient 
with rGBM treated with re-RT. Yellow outlines the CTV and magenta contour outlines the pre-treatment rChoNAA > 2 volume. B Pre-treatment T2/
FLAIR. C rChoNAA > 2 overlaid pre-treatment T1PC. D Post-treatment T1PC. An area of recurrence is seen medially that was identified by the initial 
rChoNAA > 2 maps. E Sagittal pre-treatment T1PC from a separate patient with rGBM treated with re-RT. Yellow outlines the CTV and magenta 
contour outlines the pre-treatment rChoNAA > 2 volume. F Pre-treatment T2/FLAIR. G rChoNAA > 2 overlaid pre-treatment T1PC. H Post-treatment 
T1PC. Area of recurrence posteriorly was largely included in the rChoNAA > 2 volume but not T1PC volume. Note that areas of recurrence are not 
avidly enhancing due to concurrent bevacizumab administration
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Discussion
To our knowledge, this is the first study of sMRI based 
re-RT targeting in rGBM. We re-demonstrated that 
FLAIR hyperintense volumes are often large in rGBM. In 
upfront RT of GBM, the FLAIR hyperintense volumes are 
often treated due to high suspicion for disease [27]. How-
ever, in rGBM FLAIR is typically not used to guide re-RT 
on most studies because of fears of toxicity, and because 
much of the FLAIR volume is suspected to be benign 
from prior RT or other causes such as vasogenic edema. 
Conversely, in this series the T1PC volumes typically 
used to guide re-RT are about 90% smaller than FLAIR 
hyperintensity. Complementary to the standard imaging, 
we found that sMRI-derived rChoNAA > 2 volumes typi-
cally confirmed active disease within the T1PC volumes 
and then extended significantly into the FLAIR volume, 
identifying larger areas of non-enhancing malignancy 
within the FLAIR hyperintensity volume. The rCho-
NAA > 2 delineated GTVs identified areas of malignancy 
that would have been missed by RT based on T1PC-
based target delineation. After treatment, all patients 
who failed RT recurred within the CTV delineated by 
the summed volumes of both T1PC and rChoNAA > 2. 
All this suggests that the addition of rChoNAA > 2 adds 
complementary value for demarcating high-risk rGBM 

targets and the current 35  Gy in 10 fraction dose in 
rGBM may be insufficient for durable local control.

A concern for re-RT of rGBM is radiation necro-
sis, particularly in the setting of dose escalation [28]. 
The risk of radiation necrosis can reach more than 24% 
when the cumulative dose is escalated to between 124 
and 150 equivalent dose in 2  Gy fractions (EQD2) [29]. 
The treatment for radiation necrosis is bevacizumab, 
which also has activity in rGBM [30, 31]. This suggests 
that bevacizumab may prevent radiation necrosis lead-
ing to the limited toxicity observed in this study despite 
use of enlarged radiation fields compared to other stud-
ies. Indeed, a recent meta-analysis of 1399 patients who 
received reirradiation alone or in combination with 
bevacizumab found a significant decrease in the rate of 
radiation necrosis with the addition of bevacizumab [32]. 
As such, we have opened a prospective therapeutic trial 
(NCT05284643) of sMRI and bevacizumab based RT 
field size and dose escalation for rGBM.

No standard of care has been established in the man-
agement of rGBM, as no multi-center randomized trials 
have shown an overall survival benefit to any modality. 
Options for second line therapies include surgery, radia-
tion, and systemic therapies. A systematic review and 
meta-analysis of 50 publications suggested a 6- month 
PFS benefit with re-RT; however, most studies included 
were level III evidence [33]. RTOG 1205 demonstrated 
an improved 6  month PFS (54% vs 29%, P = 0.001) and 
median PFS (7.1 vs 3.8 months, P = 0.051) with low (5%) 
frequency of severe acute toxicities when hypofraction-
ated radiation is added to bevacizumab monotherapy 
[21]. Our goal is to build upon this PFS benefit towards 
an OS benefit by enhancing re-RT dose and targeting. 
While difficult to compare directly, the reported median 
PFS of 6.5 months in this study is from a separate patient 
population with rGBM treated with re-RT [21]. Our goal 
is to build upon this PFS benefit towards an OS benefit 
by enhancing re-RT dose and targeting. The outcomes in 
this study are favorable considering the higher propor-
tion of pre-treated and poor performance status patients 
in our cohort. Systemic therapies alone demonstrated 
lower PFS, for example, with a median PFS of 3.5 months 
with bevacizumab in Checkmate 143, median PFS of 
4.2 months with bevacizumab and lomustine in EORTC 
26,101, and a median PFS of 3.4  months with bevaci-
zumab and the viral agent VB-111 in GLOBE [34–36].

We also analyzed the potential value of rCBV and ADC 
in rGBM re-RT planning as they are often used to assist 
clinicians to identify rGBM and differentiate it from 
radiation necrosis [37]. Attempts have also been made 
to use these volumes to guide rGBM dose escalation in 
the upfront GBM setting [38]. Our study found no utility 
for re-RT targeting by rCBV/ADC given tiny identified 

Fig. 5 Progression-free and overall survival for patients receiving 
re-RT. A Kaplan–Meier graph showing progression-free survival for all 
patients who underwent re-RT. Median PFS = 6.5 months. B Kaplan–
Meier graph showing overall survival for all patients who underwent 
re-RT. Median OS = 7.1 months
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volumes, though differences in technique might improve 
that capability.

The findings of this study must be viewed within the 
context of our limitations such as the study’s non-thera-
peutic nature, single institution non-randomized design, 
and limited number of patients. One concern is that 
while rChoNAA > 2 has been validated as a tumor marker 
in glioblastoma, that metabolite ratio may not be the 
best sMRI metric for delineation of rGBM. Still, we are 
encouraged by a radiology-pathology correlation study 
in rGBM demonstrating mean Cho/NAA ratios of 3.48 
for tumor, 1.31 for radiation injury, and 0.79 for normal 
appearing white matter, declaring a ratio of 1.8 as a dif-
ferentiator for tumor in 27 out of 28 patients tested [39].

Conclusions
In summary, target volumes delineated by choline to 
N-acetyl-aspartate ratio greater than 2 generated from 
spectroscopic magnetic resonance imaging revealed 
areas of glioblastoma recurrence not identified using 
standard T1 post-contrast enhancing sequences alone. 
Treatment failures may be prevented by expanding treat-
ment fields to cover these high-risk areas. Dose escala-
tion may be necessary to impact failure rates within the 
treatment field. Future plans include radiologic-patho-
logic validation of sMRI for rGBM and a prospective trial 
to investigate the safety of enlarged and dose-escalated 
RT fields based on sMRI for rGBM.
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