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Abstract 

Background Methylprednisolone is recommended as the front-line therapy for radiation-induced brain necrosis (RN) 
after radiotherapy for nasopharyngeal carcinoma. However, some patients fail to benefit from methylprednisolone or 
even progress. This study aimed to develop and validate a radiomic model to predict the response to methylpredniso-
lone in RN.

Methods Sixty-six patients receiving methylprednisolone were enrolled. In total, 961 radiomic features were 
extracted from the pre-treatment magnetic resonance imagings of the brain. Least absolute shrinkage and selec-
tion operator regression was then applied to construct the radiomics signature. Combined with independent clinical 
predictors, a radiomics model was built with multivariate logistic regression analysis. Discrimination, calibration and 
clinical usefulness of the model were assessed. The model was internally validated using 10-fold cross-validation.

Results The radiomics signature consisted of 16 selected features and achieved favorable discrimination perfor-
mance. The radiomics model incorporating the radiomics signature and the duration between radiotherapy and RN 
diagnosis, yielded an AUC of 0.966 and an optimism-corrected AUC of 0.967 via 10-fold cross-validation, which also 
revealed good discrimination. Calibration curves showed good agreement. Decision curve analysis confirmed the 
clinical utility of the model.

Conclusions The presented radiomics model can be conveniently used to facilitate individualized prediction of the 
response to methylprednisolone in patients with RN.
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Introduction
In South China, nasopharyngeal carcinoma (NPC) is 
one of the most commonly diagnosed cancers [1]. Radia-
tion therapy has become the mainstay of treatment for 
NPC, which has a long-term effect. However, the tem-
poral lobes were inevitably exposed to radiation because 
the nasopharynx is located near the base of the skull. 
Accordingly, NPC patients treated with radiation were 
vulnerable to radiation-induced brain necrosis (RN), and 
the reported rates of RN ranged from 3 to 40% [2–6].

Currently, the treatment of RN remains challenging. 
Several treatment strategies have been tried for symp-
tomatic relief, including anticoagulants, hyperbaric oxy-
gen, vitamins, and surgery, but none of them has been 
shown to reverse cerebral necrosis [7–10]. The efficacy 
of bevacizumab has recently been suggested for cerebral 
radiation necrosis, but using this drug had limitation in 
patients with cerebral hemorrhage [11, 12]. Additionally, 
a previous study showed that 39.5% of patients treated 
with bevacizumab had a recurrence of RN [13].

For decades, intravenous steroids have been recom-
mended as the primary therapy for RN due to their 
ability to reduce cytokine and inflammatory responses 
[14–17]. Our previous study has also shown that intrave-
nous steroids mitigate brain necrosis in RN patients, and 
approximately 30% of patients had an effective response 
to intravenous steroids [18]. However, despite similar 
clinical features and therapeutic strategies, some NPC 
patients with RN did not benefit from steroid therapy and 
their brain necrosis volume might even have increased 
due to individual differences [15, 18]. Thus, early pre-
diction of treatment response on steroid may further 
optimize clinical decision-making and improve the per-
sonalization of patient management, as well as prevent a 
few RN patients who might have a non-effective response 
from the risk of steroid-related adverse events.

Radiomics is an innovative tool which converts medi-
cal images into analytically valuable, high-dimensional 
features through algorithms, it uses image-based bio-
markers to diagnose diseases, evaluate prognosis, and 
predict treatment response [19–21]. The proliferation of 
pattern recognition tools and the growing size of datasets 
have facilitated the development of radiomics, potentially 
improving predictive accuracy [20].

In previous studies, radiomics has been applied to 
predict lymph node metastasis in colorectal cancer and 
response to chemoradiotherapy in esophageal can-
cer and rectal cancer [22–24]. These studies illustrated 
the potential value of radiomics as a tool for predicting 
steroid response in brain necrosis patients. To the best 
of our knowledge, no radiomics-based study has been 
conducted for predicting the response to steroids in RN 
patients to date.

In the current study, we developed and validated 
a radiomics model for prediction of the response to 
intravenous methylprednisolone in patients with brain 
necrosis after radiotherapy for NPC.

Methods and materials
Patients
Ethical approval was obtained from the institutional 
review board for this retrospective analysis. This study 
comprised an evaluation of the institutional database 
for medical records between January 2005 and Decem-
ber 2016 to identify patients with brain necrosis after 
radiotherapy for NPC. A total of 66 NPC patients with 
RN were enrolled in this study, according to the fol-
lowing inclusion criteria: (a) underwent radiotherapy 
at least 12  months before the administration of intra-
venous methylprednisolone; (b) received high-dose or 
low-dose intravenous methylprednisolone treatment 
and no bevacizumab has been administrated before 
(Additional file  1: Appendix A1); and (c) performed 
pre- and post-treatment magnetic resonance imag-
ings (MRI) of the brain and with measurable lesions in 
the MRI. The exclusion criteria were as follows: NPC 
relapse or metastases, surgical brain lesion resection, 
other tumor diseases, or other diseases of the nervous 
system. The patient selection process is presented in 
Fig. 1.

Demographic and pretreatment clinical character-
istics before methylprednisolone administration were 
derived from medical records, including age, gen-
der, duration between radiotherapy and RN diagnosis 
(DBRN), duration between radiotherapy and methyl-
prednisolone treatment (DBRM), duration between RN 
diagnosis and methylprednisolone treatment (DBNM), 
aspartate transaminase (AST), alanine transaminase 
(ALT), high-sensitivity C-reaction protein levels (Hs-
CRP), the maximum radiation dose of the nasopharynx 
(Dmax of the GTVnx), the maximum radiation dose of 
the neck (Dmax of the GTVnd), radiotherapy meth-
ods, Montreal Cognitive Assessment score (MoCA), 
the Late Effects of Normal Tissue (LENT)/Subjective, 
Objective, Management, Analytic (SOMA) scale score 
(LENT-SOMA), the volume of brain necrosis, side of 
the lesions and steroid dose. Tumor staging was per-
formed on the basis of the American Joint Committee 
on Cancer TNM Staging System Manual, 7th Edition 
[25]. The RN volume was detected using T2-weighted 
fluid-attenuated inversion recovery (FLAIR) images 
3  days before methylprednisolone administration (F0) 
and at 3  months (F1) of follow up. A reduction in RN 
volume of more than 25% at F1 compared with F0 was 
defined as effective response [18].
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Acquisition of MR images, segmentation of volumes 
of interest, and extraction of radiomic features
All patients underwent pre- and post-treatment MRI 
with a 1.5  T MR scanner (Gyroscan Intera; Philips, 
Aachen, Germany). On coronal T2-weighted FLAIR 
images, the brain necrosis margins can be delineated 
more accurately due to its high signal intensity, and the 
radiomics features were extracted from the images. 
Magnetic resonance image acquisition parameters were 
described in the Supplementary Information (Additional 
file 1: Appendix A2).

The segmentation was required before extracting quan-
titative radiomics features. The manual segmentation was 
performed using the ITK-SNAP software (Version 3.6.0; 
www. itk- snap. org). Two neuroradiologists blinded to the 
clinical data (one with 10  years of experience, another 
with 15 years of experience) independently delineated the 
regions of interest (ROIs) based on T2-weighted FLAIR 
images. After that, we stacked the ROIs and constructed 
volumes of interest (VOIs) of the brain necrosis.

Preprocessing and radiomic feature extraction were 
conducted using the PyRadiomics package (Version 
1.3.0) in Python (3.6.4), a platform that allowed the 
extraction of a large panel of engineered features from 
images; the features and image processing can be stand-
ardised by utilizing this radiomic quantification platform 
[26]. A total of 961 radiomics features were extracted 
from T2-weighted FLAIR images using PyRadiomics. We 
provided the parameter settings for image processing and 
feature extraction to facilitate their application in Addi-
tional file 1: Appendix A3.

Radiomics signature construction and performance 
assessment
We applied the least absolute shrinkage and selec-
tion operator (LASSO) method, which was suitable for 
regression of high dimensional data, to select treatment 
response-related features with nonzero coefficients [27]. 
Based on a linear combination of selected features, we 
developed a radiomics score that reflected the response 

Fig. 1 Study flowchart of cohort selection. Abbreviations: NPC = Nasopharyngeal Carcinoma; MRI = Magnetic Resonance Imaging

http://www.itk-snap.org
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to steroids for each patient. The discrimination of the 
radiomics signature was assessed by the area under the 
curve (AUC) of the receiver operator characteristic 
(ROC). And analyses were stratified to evaluate the per-
formance of the radiomics signature in different sub-
groups according to age, gender, DBRN, and steroid dose.

Development of an individualized prediction model
First, the radiomics signature and the clinical candidate 
predictors were tested in a univariate logistic regression 
analysis, and variables with P < 0.2 were subjected to sub-
sequent multivariable analysis. The significant predictors 
for the prediction model were selected using a multivari-
ate logistic regression algorithm with backward step-wise 
selection and Akaike’s Information Criterion (AIC) [28]. 
We estimated the collinearity diagnostic of multivariable 
logistic regression using a variance inflation factor (VIF). 
On the basis of the multivariate logistic regression model, 
a radiomics nomogram was generated.

Performance evaluation and internal validation 
of predictive nomogram
A calibration curve was performed to evaluate the nom-
ogram’s calibration. The Hosmer–Lemeshow test was 
used to assess the goodness-of-fit of the nomogram [29]. 
To quantify the discrimination performance of the radi-
omics nomogram, AUC was measured. The radiomics 
nomogram was subjected to 10-fold cross-validation to 
calculate a relatively optimism-corrected AUC.

Clinical use
The clinical utility of the nomogram was assessed using 
decision curve analysis (DCA) by calculating the net ben-
efit to the patient based on different threshold probabili-
ties [30].

Statistical analysis
All statistical analyses were performed with R software 
(version 3.6.2; http:// www.R- proje ct. org). We used the 
"glmnet" package for LASSO logistic regression and the 
"pROC" package for plotting ROC curves. The “rms” 
package was used for calibration plots. The Hosmer–
Lemeshow test was performed with the “generalhoslem” 
package. DCA plots were generated with “dca.R". Com-
paring the areas under the ROC curves (AUCs) of differ-
ent subgroups was done with DeLong tests. All statistical 
tests were two-sided, and P values of less than 0.05 were 
considered significant.

Results
Patient clinical characteristics
As shown in Table 1, the characteristics of patients were 
summarized. Among all 66 RN patients, 38 patients 

had bilateral brain necrosis lesions (57.6%), while 
28 patients (42.4%) showed unilateral brain necrosis 
lesions. A 3-month follow-up of T2-weighted FLAIR 
images showed radiological improvement in 24 (36.4%) 
of 66 patients, respectively. The median DBRN was 
41.4 months (IQR, 32.4–57.5).

Radiomics signature construction and performance 
assessment
We extracted a total of 961 radiomics features of necrosis 
lesions based on T2-weighted FLAIR images. According 
to LASSO logistic regression, 16 features with nonzero 
coefficients were screened (Fig. 2A and B). These features 
were incorporated into the radiomics score calculation 
formula (Additional file 1: Appendix A4).

The radiomics signature achieved good discrimination 
for predicting the response to steroids in RN patients, 
with an AUC of 0.961 (95% CI, 0.921–1.000, Fig.  2C). 
The waterfall plot revealed the distribution of radiomics 
scores and treatment responses for individual patients 
(Fig.  2D). The radiomics signature achieved good dis-
crimination in the stratified analysis according to age, 
gender, DBRN, and steroid dose. And the DeLong test 
results of AUCs showed no significant difference in the 
different subgroups (Additional file 2: Fig. S1).

Development of an individualized prediction model
Univariate logistic regression analysis revealed that four 
variables, consisting of the radiomics signature, MoCA 
scores, LENT-SOMA scores, and DBRN, were signifi-
cant at a level of P < 0.2 (Table 2). A multivariate logistic 
regression analysis identified the radiomics signature and 
DBRN as independent predictors (Table  2). The radi-
omics score (per 0.1 increase) remained a strong inde-
pendent predictor of response to steroids after adjusting 
for clinical factors (OR 3.388, 95% CI, 0.538–21.334, 
P < 0.001). With regard to the collinearity diagnosis, the 
VIF values of the four predictive factors ranged from 
1.022 to 1.065, which indicated no collinearity. A model 
that incorporated the radiomics signature and DBRN was 
developed and presented as the nomogram (Fig. 3A).

Performance evaluation and internal validation 
of predictive nomogram
The calibration curve of the radiomics nomogram for 
the probability of benefit from steroid treatment showed 
favorable agreement between prediction and observa-
tion in the study (Fig. 3B). The Hosmer–Lemeshow test 
indicated good calibration power, with a non-significant 
P value of 0.818. The radiomics nomogram revealed good 
discrimination, with an AUC of 0.966 (95% CI, 0.929–
1.000, Fig. 3C) and an optimism-corrected AUC of 0.967 
via 10-fold cross-validation.

http://www.R-project.org
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Clinical use
Figure  4 illustrated the results of the decision curve 
analysis for the radiomics model. With regard to clini-
cal application, the DCA demonstrated favorable 
performance for the model. While the probability of 
achieving effective response ranged from 0 to 100%, 
using the radiomics nomogram to determine effective 
response to steroid showed a greater advantage than 

either the regimen in which all patients were assumed 
to achieve effective response or the regimen in which 
no patients were.

Discussion
In the current study, we developed and validated a radi-
omics signature-based nomogram that incorporat-
ing the radiomics signature and the clinical variable for 

Table 1 Clinical characteristics of the patients by groups in the study

Data are shown as numbers (%) or medians (interquartile ranges). P value is calculated from chi-square test for categorized variables and two-sample t-test/Mann–
Whitney U test for continues variables, which represents the univariate association test of subgroups

DBRN, duration between radiotherapy and radiation-induced brain necrosis (RN) diagnosis; DBRM, duration between radiotherapy and methylprednisolone treatment; 
DBNM, duration between RN diagnosis and methylprednisolone treatment; AST, aspartate transaminase; ALT, alanine transaminase; Hs-CRP, high-sensitivity C-reaction 
protein levels; Dmax of the GTVnx, the maximum radiation dose of the nasopharynx; Dmax of the GTVnd, the maximum radiation dose of the neck; IMRT, intensity-
modulated radiation therapy; MoCA, Montreal Cognitive Assessment score; LENT-SOMA, the late effects of normal tissue (LENT)/subjective, objective, management, 
analytic (SOMA) scale score; NPC, nasopharyngeal carcinoma; RN, radiation-induced brain necrosis; FLAIR, fluid-attenuated inversion recovery
#  summary grade of the Subjective, Objective, and Management(SOM) characteristics

Variable Patient cohort (N = 66) Non-effective (N = 42) Effective (N = 24) P value

Age, years 49 (44–56) 49 (43–56) 50 (44–56) 0.709

Sex 0.955

  Male 52 (78.8) 33 (78.6) 19 (79.2)

  Female 14 (21.2) 9 (21.4) 5 (20.8)

Radiomics score − 0.940 (− 1.600–0.376) − 1.476 (− 1.927–0.935) 0.543 (0.00–1.127)  < 0.001

DBRN, months 41.4 (32.4–57.6) 41.6 (37.6–58.0) 40.0 (27.4–54.8) 0.212

DBRM, months 61.3 (43.3–76.2) 66.6 (45.4–76.2) 56.3 (41.3–77.8) 0.375

DBNM, months 7.3 (1.2–22.9) 9.0 (1.17–22.9) 6.1 (1.4–21.2) 0.689

AST, U/L 18.5 (16.0–22.3) 18.0 (16.0–21.3) 20 (16.3–25.0) 0.303

ALT, U/L 16.0 (13.0–23.0) 15.5 (14.0–23.3) 16.0 (10.0–22.8) 0.479

Hs-CRP, mg/L 2.4 (1.1–6.2) 2.4 (1.2–14.7) 2.4 (0.8–5.8) 0.594

Dmax of the GTVnx,Gy 70.0 (70.0–72.0) 70.0 (70.0–72.0) 70.0 (70.0–73.5) 0.264

Dmax of the GTVnd,Gy 60.0 (60.0–64.0) 60.0 (60.0–61.0) 60.0 (60.0–64.0) 0.221

Dmax of the temporal lobe, Gy 68.6 (68.6–70.6) 68.8 (68.2–70.8) 67.8 (67.2–70.0) 0.868

Radiotherapy methods 0.476

  Conventional radiotherapy 58 (87.9) 36 (85.7) 22 (91.7)

  IMRT 8 (12.1) 6 (14.3) 2 (8.3)

MOCA 0.281

  < 26 47 (71.2) 28 (66.7) 19 (79.2)

  ≥ 26 19 (28.8) 14 (33.3) 5 (20.8)

LENT-SOMA# 5 (4–6) 5 (4–6) 5 (4–6) 0.945

NPC stage 0.905

  II 6 (9.1) 5 (11.9) 1 (4.2)

  III 26 (39.4) 14 (33.3) 12 (50.0)

  IV 21 (31.8) 15 (35.7) 6 (25.0)

  IVA 13 (19.7) 8 (19.1) 5 (20.8)

RN volume at baseline,  cm3 26.4 (8.8–59.5) 26.4 (8.3–64.2) 25.7 (8.9–45.2) 0.759

Side of FLAIR lesions 0.259

  Unilateral 28 (42.4) 20 (47.6) 8 (33.3)

  Bilateral 38 (57.6) 22 (52.4) 16 (66.7)

Steroid dose, mg/d 0.244

  80 31 (47.0) 22 (52.4) 9 (37.5)

  500 35 (53.0) 20 (47.6) 15 (62.5)
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individualized prediction of the response to steroids in 
NPC patients with RN. This study demonstrated that 
radiomics features from MRI images can be used to pre-
dict early therapeutic effects of steroids in RN patients 
and provided a non-invasive pre-treatment prediction 
tool to identify RN patients with a high probability of 
therapeutic benefit to steroids.

With the mechanisms underlying brain necrosis 
after radiotherapy being revealed gradually, the direct 
injury to endothelial and glial cells has been given pri-
ority in the study of its relationship with brain necro-
sis, which resulted in demyelination and vascular 
hyalinization. This primary pathology caused tissue 
inflammation and ischemia, resulting in numerous tissue 
protective responses such as angiogenesis [31]. Previous 

Fig. 2 Radiomics feature selection using LASSO binary logistic regression and the performance of the radiomics signature. A Tuning parameter 
(λ) selection in the LASSO model used tenfold cross-validation via minimum criteria. The binomial deviance was plotted versus log (λ). The dotted 
vertical lines were drawn at the optimal λ values based on the minimum criteria and 1 standard error of the minimum criteria. The optimal λ value 
of 0.0454 with log (λ) =  − 3.093 was selected. B LASSO coefficient profiles of the 961 radiomics features. The dotted vertical line was drawn at the 
λ value of 0.0454, where optimal λ resulted in 16 nonzero coefficients. Plots C present the ROC curves of the radiomics signature in the 66 patients, 
respectively. D Waterfall plot for distribution of radiomics score and response to steroid of individual patients. Green bars show scores for patients 
who experienced progression, while blue bars show scores for those who exhibited radiological improvement
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studies have indicated that corticosteroids could suppress 
cytokine and inflammatory responses, reducing brain 
necrosis and changes in blood vessels and inflammation 
[14, 17]. Therefore, steroids have been recommended as 
the primary therapy in RN patients for decades [14].

However, steroid treatment may not be beneficial for all 
patients, and it is currently difficult to determine which 
patients will benefit from it. Furthermore, some patients 
might suffer from steroid-related adverse events such 
as infections, hyperglycemia, osteoporosis, peptic ulcer 
disease and liver damage [32, 33]. Thus, it is essential to 
develop an accurate predictive tool for the pre-treatment 

prediction of therapeutic effects to steroids in RN 
patients. And if the patients who are at high probability 
of therapeutic benefit to steroids can be identified before 
treatment, then these patients might be good candidates 
for intravenous steroids treatment.

Recent advances in radiomics have led to new insights 
into personalized medical care in cancer practices that 
taked into account tumor diagnosis, classification of 
subtypes, and treatment response prediction [21, 24, 
34]. Findings from these studies emphasized the signifi-
cance of radiomics, which can also be used to identify 

Table 2 Potential predictors of the response to steroid in patients with brain necrosis

DBRN, duration between radiotherapy and radiation-induced brain necrosis (RN) diagnosis; DBRM, duration between radiotherapy and methylprednisolone treatment; 
DBNM, duration between RN diagnosis and methylprednisolone treatment; AST, aspartate transaminase; ALT, alanine transaminase; Hs-CRP, high-sensitivity C-reaction 
protein levels; Dmax of the GTVnx, the maximum radiation dose of the nasopharynx; Dmax of the GTVnd, the maximum radiation dose of the neck; IMRT, intensity-
modulated radiation therapy; MoCA, montreal cognitive assessment score; LENT-SOMA, the late effects of normal tissue (LENT)/subjective, objective, management, 
analytic (SOMA) scale score; NPC, nasopharyngeal carcinoma

*P < 0.02; #summary grade of the Subjective, Objective, and Management (SOM) characteristics

Variable Univariate logistic regression Multivariate logistic regression

OR (95%CI) P* OR (95%CI) P

Age, years 1.008 (0.954–1.065) 0.774

Sex 0.955

  Male Reference

  Female 0.965 (0.282–3.302)

Radiomics score (per 0.1 increase) 2.172 (0.476–9.916)  < 0.001* 3.388 (0.538–21.334)  < 0.001

DBRN, months 0.992 (0.983–1.000) 0.050* 1.020 (1.001–1.040) 0.034

DBRM, months 0.997 (0.981–1.012) 0.664

DBNM, months 0.992 (0.958–1.028) 0.674

AST, U/L 1.029 (0.939–1.128) 0.543

ALT, U/L 0.989 (0.942–1.038) 0.655

Hs-CRP, mg/L 0.999 (0.978–1.021) 0.947

Dmax of the GTVnx,Gy 1.130 (0.910–1.404) 0.269

Dmax of the GTVnd,Gy 1.082 (0.947–1.237) 0.246

Dmax of the temporal lobe, Gy 0.982 (0.827–1.167) 0.838

Radiotherapy methods 0.481

  Conventional radiotherapy Reference

  IMRT 0.545 (0.101–2.944)

MOCA 0.048*

  < 26 Reference

  ≥ 26 0.357 (0.129–0.992)

LENT-SOMA# 0.917 (0.840–1.000) 0.050*

NPC stage 0.469

  II Reference

  III 4.286 (0.438–41.954) 0.211

  IV 2.000 (0.191–20.898) 0.563

  IVA 3.125 (0.278–35.157) 0.356

Steroid dose, mg/d 0.246

  80 Reference

  500 1.833 (0.658–5.107)
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patients with a high probability of benefitting from ster-
oid therapy.

Consequently, we aimed to select the key radiomics 
features from MRI images and construct a radiomics 
signature in this study. Our radiomics signature exhib-
ited favorable discrimination across the whole data set. 
Encouragingly, the radiomics signature also demon-
strated favorable discrimination in stratified analysis 
according to age, gender, DBRN, and steroid dose.

Then, we identified the radiomics signature and DBRN 
as independent significant predictors based on a multi-
variate logistic regression model, with corresponding 

odds ratios of 3.3876 and 1.020. The odds ratio for 
DBRN suggested that the later brain necrosis occurred 
after radiotherapy, the higher the probability of steroid-
related therapeutic benefit. This finding might largely 
be attributed to the mechanism of steroid on radiation-
induced brain necrosis. Prior studies have demonstrated 
that early brain necrosis after irradiation was generally 
attributed to transient demyelinating processes related 
to blood–brain barrier injury or selective oligodendro-
cyte dysfunction [35, 36]. Thus, steroids failed to allevi-
ate edema at early stage significantly. While during the 
late brain necrosis phase, radiation of the brain resulted 

Fig. 3 Radiomics nomogram for the prediction of therapeutic response to steroid and the performance of the nomogram. A Radiomics nomogram 
based on radiomic signatures and clinical factor. Plots B shows the calibration curve of the nomogram. Plot C presents the ROC curve of the 
radiomics nomogram
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in multiple inflammatory changes. Numerous inflam-
matory cells, such as macro-phages and lymphocytes, 
were detected with telangiectatic vascularization in the 
area surrounding the necrosis and might serve as poten-
tial targets for successful corticosteroid therapy [16, 37]. 
Hence, the patients who occurred brain necrosis later 
after radiotherapy might have a greater probability of 
favorable response to steroids.

In order to provide clinicians with an easy-to-use tool, 
we constructed a radiomics nomogram that integrating 
the radiomics signature and DBRN for prediction of the 
response to steroids, which showed satisfactory discrimi-
nation with an AUC of 0.966. DCA was generally used to 
evaluate whether the radiomics model-based decisions 
could benefit patients based on threshold probability 
[28, 38]. In our study, DCA revealed that if the threshold 
probability varied from 0 to 100%, applying the radiom-
ics nomogram to determine effective response to steroid 
showed a higher overall net benefit than either the treat-
all or the treat-none scheme. Therefore, the patients who 
were designated to benefit from steroid applying our 
radiomics nomogram had a comparatively high possibil-
ity of receiving true therapeutic benefit from steroids, 
and intravenous methylprednisolone would be recom-
mended in these patients, especially for the patients 
who occurred brain necrosis later after radiotherapy. 

In addition, surgical operation and bevacizumab were 
reserved for steroid refractory brain necrosis.

This is the first attempt to develop a radiomics sig-
nature-based nomogram for predicting therapeutic 
effects of steroids in NPC patients with RN. Overall, our 
study has two strengths. First, high-dimensional fea-
tures extracted from MRI in the current study provide 
more detailed information about brain lesions, which 
can improve the accuracy and robustness of prognostic 
model. Furthermore, the radiomics feature extraction 
was conducted on three-dimensional volumes of interest 
(VOIs) of brain lesions rather than the two-dimensional 
regions of interest (ROIs) of brain lesions, which can bet-
ter reflect the heterogeneity of the entire lesion. Second, 
the presented radiomic model is composed of only two 
items, they are available from routine MRI analysis and 
clinical data. Therefore, our prognostic model may serve 
as a non-invasive tool for the pre-treatment prediction of 
the response to steroids in NPC patients with RN.

Despite its strengths, some limitations still exist. First, 
our study is the lack of validation in an external cohort. A 
larger sample size from multiple centers should be inves-
tigated to validate the robustness and reproducibility of 
our proposed radiomics. Second, given the retrospec-
tive nature of this study, long-term follow-up data is not 
available for assessing whether the patients benefitting 
from steroids exhibit recurrence, which could help clini-
cal decision-making. Thus, further studies are necessary 
to resolve these issues.

In summary, our study presents a radiomics nomogram 
incorporating both the radiomics signature and clinical 
variable, which can be conveniently used to predict ther-
apeutic effects to intravenous steroids in NPC patients 
with RN. Further external validation is required to evalu-
ate the predictive ability of the radiomics model prior to 
its implementation in clinical application.
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