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Abstract
Background  Accurate prediction of response to neoadjuvant chemoradiotherapy (nCRT) is very important for 
treatment plan decision in locally advanced rectal cancer (LARC). The aim of this study was to investigate whether 
self-attention mechanism based multi-sequence fusion strategy applied to multiparametric magnetic resonance 
imaging (MRI) based deep learning or hand-crafted radiomics model construction can improve prediction of 
response to nCRT in LARC.

Methods  This retrospective analysis enrolled 422 consecutive patients with LARC who received nCRT before surgery 
at two hospitals. All patients underwent multiparametric MRI scans with three imaging sequences. Tumor regression 
grade (TRG) was used to assess the response of nCRT based on the resected specimen. Patients were separated into 
2 groups: poor responders (TRG 2, 3) versus good responders (TRG 0, 1). A self-attention mechanism, namely channel 
attention, was applied to fuse the three sequence information for deep learning and radiomics models construction. 
For comparison, other two models without channel attention were also constructed. All models were developed in 
the same hospital and validated in the other hospital.

Results  The deep learning model with channel attention mechanism achieved area under the curves (AUCs) of 
0.898 in the internal validation cohort and 0.873 in the external validation cohort, which was the best performed 
model in all cohorts. More importantly, both the deep learning and radiomics model that applied channel attention 
mechanism performed better than those without channel attention mechanism.
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Background
Neoadjuvant chemoradiotherapy (nCRT) followed by 
total mesorectal excision (TME) is widely recommended 
as the standard treatment strategy for locally advanced 
rectal cancer (LARC) [1, 2]. Response to nCRT is a favor-
able indicator of good prognosis. Approximately 50-60% 
of patients with LARC are downstaged and about 20% 
show pathological complete response after nCRT [1, 3, 
4]. However, compared with good responders to nCRT, 
poor responders tend to have higher local recurrence and 
recurrence-free survival rate [3]. These poor responders 
may benefit little from nCRT, but still experience toxic 
effects of treatment such as diarrhea, nausea, hemato-
logical infection, and fever [5, 6]. Therefore, pretreatment 
prediction of the response to nCRT is of great impor-
tance for devising appropriate personalized treatment 
plans.

Magnetic resonance imaging (MRI) is the most impor-
tant imaging approach for assessment of treatment 
response in LARC patients [7]. Pretreatment MRI fea-
tures, such as tumor volume, tumor height, depth of 
tumor penetration, and absence of extramural venous 
invasion, are reported to be associated with a better 
response to therapy [8, 9]. However, visual assessment 
of MRI features is limited by subjectivities and relies on 
experiences of radiologists [10]. Thus, pretreatment accu-
rate identification of nCRT poor responders still remains 
challenge other than by pathologic evaluation after com-
pleting neoadjuvant therapy.

Recently, radiomics and deep learning has drawn 
great attractions due to the superiority of quantifying 
imaging phenotype that associated with the underlying 
tumor pathological character from MRI or other imag-
ing modalities beyond visual interpretation [11]. A grow-
ing number of studies aimed at prediction of treatment 
response have supported more effective performance 
basing on multiparametric MRI [12–15]. To predict poor 
responders, Zhou et al. developed a radiomics model 
based on pretreatment apparent diffusion coefficient 
(ADC) map, T1 weighted- (T1w), T1 contrast-enhanced 
(T1c) and T2 weighted (T2w) MRI with an area under 
the receiver-operating characteristic (ROC) curve (AUC) 
value of 0.773 [16]. However, all above studies just com-
bined multiparametric MRI in a very simple strategy, 
which concatenated radiomic features or deep learning 
features according to different imaging sequences for fur-
ther feature selection or fully connected network.

The self-attention mechanism has been widely used in 
various medical imaging analyses such as segmentation 

[17], classification [18] and survival prediction [19]. 
Without any explicit supervision, self-attention mecha-
nism can learn to focus on important features via training 
end-to-end together with the original convolutional neu-
ral networks (CNN) backbone. Squeeze-and-Excitation 
(SE) [20] network is a prominent approach that focuses 
on channel attention, which natural fit for multi-para-
metric fusion. Therefore, the present multicenter study 
aims at investigating whether SE-based channel attention 
mechanism is better than feature concatenation on the 
task of treatment response prediction in LARC.

Methods
Patients
This retrospective multicenter study was approved by the 
Ethics Committee of the Six Affiliated Hospital of Sun 
Yat-sen University (SAHSYU) and that of the Zhejiang 
Cancer Hospital (ZCH). The requirement for informed 
patient consent was waived. This study included eligible 
patients who were diagnosed with LARC by multipara-
metric MRI examination and received standard chemo-
radiotherapy treatment between February 2012 and 
May 2018, as shown in Fig. 1. Patients who met the fol-
lowing exclusion criteria were removed from the analy-
sis: (i) lack of pathologic treatment response evaluation 
after treatment; (ii) lack of MRI sequence including T2w, 
T1c and ADC; (iii) insufficient MRI quality due to bowel 
peristalsis-related artifacts; (iv) lack of clinical informa-
tion including sex, age, clinical T stage (cT-stage), clinical 
N stage (cN-stage) and carcinoembryonic antigen (CEA; 
cutoff ≥ 5 ng/ml, < 5 ng/ml) blood level.

Neoadjuvant chemoradiotherapy
All enrolled patients underwent preoperative treat-
ment with five cycles of infusional fluorouracil (leucovo-
rin 400  mg/m2 intravenously followed by fluorouracil 
400  mg/m2 intravenously and fluorouracil 2.4  g/m2 by 
48-h continuous intravenous infusion) and concurrent 
radiation treatment. Radiotherapy was delivered at 1.8 to 
2.0 Gy daily Monday through Friday for a total of 23 to 
28 fractions over 5 to 6 weeks and a total dose of 46.0 to 
50.4 Gy.

Assessment of response to nCRT
The pathologic treatment response after nCRT was eval-
uated based on TME resection specimens, according 
to the four-tier American Joint Committee on Cancer 
(AJCC) Cancer Staging tumor regression grade (TRG) 
systems [21]. The four TRG groups were as follows: TRG 
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0, no residual tumor cells; TRG 1, single tumor cell or 
small group of tumor cells; TRG 2, residual cancer with 
desmoplastic response; TRG 3, minimal evidence of 
tumor response. According to the AJCC TRG systems, 
patients were separated into 2 groups: poor responders 
(TRG 2, 3) versus good responders (TRG 0, 1).

MRI Acquisition and Tumor Segmentation
All patients from Six Affiliated Hospital of Sun Yat-sen 
University underwent T2w, T1c and ADC MRI scans 
before the nCRT with 1.5 Tesla MRI (Optima MR 360, 
GE Medical Systems, USA) using an eight-element body 
array coil with fixed image protocols. All patients from 
Zhejiang Cancer Hospital underwent T2w, T1c and 
ADC scans before the nCRT with 3.0 Tesla MRI (Verio 
3.0T MR, Siemens Medical Systems, Germany). Param-
eters for MRI acquisition were shown in supplementary 
Table S1. Before further analysis, all axial slices were nor-
malized into 1 mm × 1 mm pixel spacing. The region of 
interest (ROI) was manually delineated around the tumor 
outline via the itk-SNAP software (www.itksnap.org) on 
the axial slice with the largest lesion cross-section of T2w 
images by one gastrointestinal radiologist (reader 1) with 
10 years of experience, and was then copied onto the cor-
responding slice of T1c and ADC images. In addition, 
the segmentation was examined by another gastrointes-
tinal radiologist (reader 2) with 30 years of experience. If 
reader 2  found any discrepancies between the segmenta-
tion and the actual tumour outline, he provided feedback 

to reader 1 for consultation. The segmentation was then 
adjusted in consultation with reader 1. The main concern 
is to outline the tumour area avoiding gas in the intestinal 
lumen, fat or other structures around the lesion area, etc. 
This is done to ensure that the outlined area corresponds 
to the tumour.

Experimental design
In the present study, two kinds of channel attention 
fusion approaches were conducted for comparison, which 
consist of a hand-crafted radiomic features-based fusion 
and an image-based fusion. Radiomic features were 
firstly extracted from the ROIs of T2w, T1c and ADC 
images using PyRadiomics version 2.2.0 [22]. A total of 
372 radiomics features were extracted from each imag-
ing sequence in this study, of which 93 were extracted 
from original images and 279 were extracted from three 
scale Laplacian of Gaussian (LoG) transformed images. 
Among the 93 features extracted from original images, 
18 were first-order statistics and 75 were textural features 
originated from Gray Level Cooccurence Matrix (n = 24), 
Gray Level Run Length Matrix (n = 16), Gray Level Size 
Zone Matrix (n = 16), Gray Level Dependence Matrix 
(n = 14) and Neighbouring Gray Tone Differnece Matrix 
(n = 5). Then ROIs of the three imaging sequences were 
cropped by an 80 × 80 bounding rectangle as a three-
channel input for image-based fusion.

To realize radiomic features-based channel fusion 
(hereinafter referred to as CFRS.), a simple self-attention 

Fig. 1  Recruitment process of the present study. nCRT, neoadjuvant chemoradiotherapy; LARC, locally advanced rectal cancer; ADC, apparent diffusion 
coefficient; T1c, T1 contrast-enhanced; T2w, T2 weighted
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module was designed using 2D convolution kernel 
as shown in Fig.  2. For each patient, n features were 
extracted from each modality of MRI, generating a fea-
ture matrix of size 3 × n as the input for the self-attention 
module. The self-attention module consists of three con-
volutional layers. The first convolutional layer has 32 fil-
ters of size 3 × 1, followed with 32 filters of size 1 × 1 in the 
second convolutional layer. The third convolutional layer 
has one filter of size 1 × 1, followed with fully connected 
layer consisting of 3 elements activated with sigmoid 
function. Then the output of the fully connected layer 
was set as 3 self-attention weighting coefficients of the 
three channels, resulting a n-dimensional channel-fused 
radiomic feature. At last, the fused feature was sent to a 
fully connected layer consisting of 1 element activated 
with sigmoid function to predict the probability of poor 
response.

To realize image-based channel fusion (hereinafter 
referred to as CFDL), SE module [20] was used as shown 
in Fig.  2. Then a shallow CNN model consisting of SE 
module and 3 convolutional layers followed by 2 fully 
connected layers was constructed for poor responder 
prediction. The detailed parameters of this model were 
also shown in Fig. 2.

The comparative performance tests were conducted for 
the model with/without channel fusion. Concretely, a tra-
ditional radiomics model (hereinafter referred to as RS) 
was built by ridge regression using the three-sequence 
concatenated features, and a deep learning model with-
out SE module (hereinafter referred to as DL) using 
three-sequence concatenated images was also built for 
comparison. There 70% of patients in SAHSYU were ran-
domly selected for fitting the model parameters, and the 
rest 30% of patients in SAHSYU were used for internal 
validation. The loss function of ridge regression can be 
expressed as blow:

	
f (w) =

m∑

i=1

(
yi − xT

i w
)2

+ λ‖ w ‖2
2

Where yi  is the label of patient i , m  is the number of 
patients, xT

i  is the feature vector of the patienti , w  is 
the coefficient of the feature, and λ is the regularization 
parameter. To determine the optimal value of the regu-
larization parameter λ , we performed 5-fold cross-val-
idation in the training cohort and tested values of λ ∈
(0.001, 1) with a step size of 0.001 at the same time. The 
λ  value that maximized the average AUC of the cross-
validation was selected as the optimal regularization 
parameter.

Gradient (Grad)-CAM [23], a flexible method can 
interpret arbitrary layers of a CNN without the need 
of any architecture modifications, was used to identify 
classification-relevant CNN features in the present study. 

Heatmap generated by Grad-CAM was used for individ-
ually visualizing the critical discriminating image regions.

Statistics
R software (version 3.6.2) was used for all statistical anal-
yses. All tests were 2-sided, and P values < 0.05 indicated 
statistical significance. The difference of clinical variables 
between two groups was compared by using the Mann-
Whitney rank-sum test or adopting the chi-square (χ2) 
test. The sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), accuracy, and 
AUC of different models were calculated. Delong test was 
performed to compare the difference of predictive per-
formance for two arbitrary models. Multivariate logistic 
regression analysis was performed to assess if the result 
predicted by each of the four constructed models was 
an independent predictive factor when considering the 
other three constructed models and clinical variables 
such as sex, age, clinical T stage, clinical N stage and CEA 
blood level.

Results
Patients
A total of 422 patients were finally included in this 
study. The clinical characteristics of these patients were 
shown in Table 1. The dataset with a sample size of 193 
randomly separated from the SAHSYU was used as the 
training cohort, and dataset from the ZCH were used as 
the external validation cohort. The rate of poor respond-
ers was 55.1% (147/267) and 72.3% (112/155) in the 
SAHSYU and ZCH cohorts, respectively. The propor-
tion of poor responders varies a lot (p < 0.001) in the two 
cohorts. CEA and clinical T stage were also significantly 
(p < 0.05) different between the two cohorts. Besides 
clinical T stage in ZCH, the other variables did not show 
significant difference between poor responders and good 
responders in each of the two cohorts.

Model construction and validation
The RS model constructed by three-sequence feature 
concatenation and ridge regression achieved an AUC of 
0.773, 0.757 and 0.806 in the training cohort, internal 
cohort and external cohort, respectively. The coefficients 
of the RS model were shown in Fig. S1. The CFRS model 
achieved an AUC of 0.836, 0.812 and 0.832 in the train-
ing cohort, internal cohort and external cohort, respec-
tively. However, compared with the RS model, the CFRS 
model did not show statistically significant improvement 
(Delong test P: 0.313 [internal validation cohort], 0.372 
[external validation cohort]).

The DL model constructed without SE module 
achieved an AUC of 0.858, 0.835 and 0.837 in the training 
cohort, internal cohort and external cohort, respectively. 
The CFDL model achieved an AUC of 0.907, 0.898 and 
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Fig. 2  Experimental design of the present study. SAHSYU, Six Affiliated Hospital of Sun Yat-sen University; ZCH, Zhejiang Cancer Hospital; ADC, ap-
parent diffusion coefficient; T1c, T1 contrast-enhanced; T2w, T2 weighted; BN, batch normalization; Conv, convolution; FC, fully- connected; SE, 
Squeeze-and-Excitation.
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0.873 in the training cohort, internal cohort and exter-
nal cohort, respectively. However, compared with the DL 
model, the CFDL model did not show statistically signifi-
cant improvement (Delong test P: 0.134 [internal valida-
tion cohort], 0.219 [external validation cohort]).

Compared with the RS model, the CFDL model showed 
a significant better performance in both the training and 
internal validation cohorts, while that was not signifi-
cant in the external validation cohort. The distribution of 
probability values of patients predicted as poor respond-
ers was shown in Fig. 3(the left column), the ROC curves 
of the four models were depicted in Fig.  3(the middle 
column), and the p-values for Delong test were also 
recorded in Fig. 3(the right column). The values of sen-
sitivity, specificity, positive PPV, NPV and accuracy were 
listed in Table 2. We also investigated if the combination 
of CFDL and CFRS can yield better results. The results 
showed that the combination of the 2 didn’t perform bet-
ter. In the internal validation cohort, the combined model 
achieved better accuracy compared with CFDL (83.9% 
VS. 77.8%). However, in the external validation cohort, 
combined model achieved very close accuracy com-
pared with CFDL (85.8% VS. 86.5). The detailed results 
were shown in the Fig. S2. Multivariate logistic regression 
analysis indicated that the result predicted by CFDL was 
the only highly significant (p < 0.05) predictive factor in 
all three cohorts, as shown in Fig. 4.

Visualization
Two typical sample cases analyzed by the CFDL model 
were visualized in Fig. 5, of which a true poor responder 
was predicted to be a poor responder with a probability 
of 69.5% and a true good responder had a lower predicted 
probability of being a poor responder. The red area of the 
Grad-CAM heatmap indicated high probability of being 
poor response. Therefore, the Grad-CAM heatmaps 
also indicated that the most tumor area of a true poor 
responder had poor response and only partial area of a 
good responder had poor response.

Discussion
Prediction of response to nCRT in LARC has always 
been a hotspot of clinical research [11, 24, 25]. In the past 
decade, radiomics and deep learning have promoted the 
study of imaging markers for response prediction. This 
study is an extension of the research field of response 
prediction in LARC. Two hand-crafted radiomics mod-
els and two end-to-end deep learning models were estab-
lished and validated in an independent external cohort. 
The results showed both the radiomics and deep learning 
were promising methods. By comparison, deep learning 
radiomics performed better than hand-crafted radiomics 
in the present study.

Recently, Giannini et al. collected pretreatment Posi-
tron Emission Tomography and MRI data from 52 
LARC patients, and built a radiomics signature combin-
ing the two modalities to predict poor responders with 
an AUC of 0.86. However, this radiomics signature was 

Table 1  Clinical characteristics of patients in two hospitals
Characteristics SAHSYU

(n = 267)
ZCH
(n = 155)

P

Poor response
(n = 147)

Good response
(n = 120)

p Poor response
(n = 112)

Good response
(n = 43)

p

Age, years 54.8 ± 12.4 53.0 ± 11.4 0.180 56.1 ± 10.9 56.6 ± 8.0 0.803 0.124
Sex 0.131 0.968 0.673
Male 117 (79.6%) 86 (71.7%) 83 (74.1%) 32 (74.4%)
Female 30 (20.4%) 34 (28.3%) 29 (25.9%) 11 (25.6%)
CEA 0.07 0.583 0.01
Positive 65 (44.2%) 40 (33.3%) 57 (50.9%) 24 (55.8%)
Negative 82 (55.8%) 80 (66.7%) 55 (49.1%) 19 (44.2%)
cT 0.113 0.038 < 0.001
T2 7 (4.8%) 14 (11.7%) 1 (1%) 0
T3 112 (76.2%) 84 (70.0%) 64 (57.1%) 34 (79.1%)
T4 28 (19%) 22 (18.3%) 47 (41.9%) 9 (20.9%)
cN 0.977 0.676 0.076
N0 35 (23.8%) 29 (24.2%) 17 (15.2%) 7 (16.3%)
N1 55 (37.4%) 46 (38.3%) 50 (44.6%) 22 (51.2%)
N2 57 (38.8%) 45 (37.5%) 45 (40.2%) 14 (32.5%)
Continuous data are given as mean ± standard deviation

P values for categorical variables were from chi-square test analysis

P values for continuous variables were from Mann-Whitney rank-sum test analysis

SAHSYU, Six Affiliated Hospital of Sun Yat-sen University; ZCH, Zhejiang Cancer Hospital; cT, clinical T stage; cN, clinical N stage
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not validated in another group of patients [26]. Petresc et 
al. collected pretreatment T2w MRI data from 67 single-
center LARC patients, and built a radiomics signature 
using 44 patients’ MRI and validated this signature using 
the other 23 patients with an AUC of 0.80 [27]. Shayesteh 
et al. also conducted a single-center radiomics study with 
a sample size of 98 and estabished an ensemble learn-
ing model to combine four radiomics signature built by 
four machine learning algorithms. This ensemble learn-
ing model achieved an AUC of 0.95 in internal valida-
tion dataset [28]. Therefore, this multicenter study was 
designed to perform both internal and external valida-
tion for the developed models. The results showed the 
four developed models had stable predictive ability in all 
cohorts.

Many studies have demonstrated that radiomics sig-
nature or deep learning radiomics from joint multipara-
metric MRI performed better than that from the single 
modality [29–31]. Because different imaging sequences 
reflect different aspects of tumor biology including tumor 
intensity, cellularity and vascularization, the combina-
tion of multiparametric MRI might improve prediction 
[32]. Li et al. demonstrated their multi-modal radiomics 
model that combined Computed Tomography and MRI 
(T1c, T2w and ADC) features was associated with bet-
ter performance than any individual sequence [33]. Our 
previous study also confirmed this conclusion, but with 
limitation that the therapeutic regimens of this cohort 
were not very consistent [16]. Based on the above study, 
the data collection criteria of the present study were 
strictly determined. Multiparametric MRI was used for 

Fig. 3  The performance of four models in the training, internal validation and external validation cohorts. The distribution of probability values of patients 
predicted as poor responders (the left column); the receiver operating characteristic curves (the middle column), p-values for Delong test (the right 
column)
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modeling, and the parameters for MRI acquisition were 
consistent within each cohort. The results indicated that 
either radiomics models or deep learning models had 
good generalization performance, even though the MRI 
device version and field strength were both different 
between the two centers.

Multiparametric MRI and attention mechanism 
opened up the opportunity to fuse the different sequences 
to further improve the accuracy over current model-
ing algorithms. Because of attention mechanism having 
a great feature selection ability, it has been successfully 
used in image segmentation [17] and classification [18]. 

Table 2  Performance index of different models in two validation cohorts
Cohort Model AUC Accuracy Sensitivity Specificity PPV NPV
Internal Validation CFDL 0.898

(0.834–0.964)
77.8%
(68.8-87.0%)

76.7%
(64.3-89.9%

78.9%
(65.8-91.9%

80.5%
(68.2-92.9%

75.0%
(61.3-89.1%

DL 0.835
(0.745–0.921)

75.3%
(65.4-84.8%)

76.7
(63.9-89.1%)

73.7%
(58.9-87.9%)

76.7%
(63.5-89.6%)

73.7%
(59.4-87.3%)

CFRS 0.812
(0.711–0.916)

76.5%
(67.3-85.9%)

76.7%
(64.2-89.7%)

76.3%
(62.7-89.8%)

78.6%
(65.7-91.2%)

74.4%
(60.8-88.5%)

RS 0.757
(0.648–0.869)

69.1%
(59.1-79.3%)

67.4%
(53.1-81.7%)

71.1%
(57.0-85.4%)

72.5%
(58.6-86.3%)

65.9%
(51.5-80.4%)

External Validation CFDL 0.873
(0.806–0.938)

86.5%
(81.1-91.7%)

91.9%
(86.9-96.9%)

72.1%
(58.8-85.2%)

89.6%
(84.1-95.1%)

77.5%
(64.3-90.2%)

DL 0.837
(0.764–0.910)

80.0%
(73.7-86.5%)

83.0%
(76.3-90.2%)

72.1%
(58.4-85.8%)

88.6%
(82.2-94.9%)

62.0%
(48.5-76.2%)

CFRS 0.832
(76.6-89.9%)

79.4%
(72.9-85.9%)

89.3%
(83.5-94.9%)

53.5%
(39.1-69.9%)

83.3%
(76.6-90.4%)

65.7%
(49.8-81.5%)

RS 0.806
(0.731–0.883)

81.3%
(75.1-87.6%)

97.3%
(94.4-100%)

39.5%
(24.8-54.8%)

80.7%
(74.0-87.6%)

85.0%
(69.8-100%)

Data are given as value (95% confidence interval)

PPV, positive predictive value; NPV, negative predictive value

Fig. 4  Odds ratio of clinical variables and developed models in multivariate logistic regression. CEA, carcinoembryonic antigen; cT, clinical T stage; 
cN, clinical N stage
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SE network, a lean but efficient self-attention model, that 
adaptively recalibrated channel-wise feature responses by 
explicitly modeling interdependencies between channels 
encouraged the aggregation of multi-channel information 

in the presence of useless or redundant information from 
multiple channels. Moreover, SE-based channel-atten-
tion module can be easily migrated to other models and 
does not change the original model structure. In view of 

Fig. 5  Grad-CAM heatmap of the last max pooling layer and the first SE-block of the CFDL model in two typical samples. (a), visualization of a 
poor responder. (b), visualization of a good responder. The heatmaps in the second row of (a) and (b) belong to max pooling layer, and the heatmaps in 
the third row of (a) and (b) belong to SE-block.
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the aforementioned advantages, the SE-based channel-
attention should be appropriate for deep learning model 
construction using multiparametric MRI for treatment 
response prediction, but there are few similar studies 
published. The present study developed two image-based 
deep learning models that called DL and CFDL, and con-
firmed the hypothesis that SE-based channel attention 
mechanism can improve the predictive ability compared 
with attention-free model. Inspired by image-based SE 
module, the present study designed a simple radiomics 
features based self-attention fusion algorithm called 
CFRS. The results support that attention mechanism 
applied to radiomics study can also improve the predic-
tive ability compared with feature concatenation based 
model.

Most radiomics studies always built a radiomic nomo-
gram with both radiomic signature and clinical variables, 
expecting a more predictive model than single radiomic 
signature. The present study analyzed five clinical vari-
ables in two independent cohorts, and found that none 
of these clinical variables was statistically significant 
predictive in univariate analysis. This result came as no 
surprise, because many previous clinical studies have 
analyzed these variables but no robust predictive fac-
tors have been identified [34–36]. In multivariate analy-
sis, there still no significant clinical variable was found, 
whereas, CFDL was a stable predictive factor. This may 
indicate biomarker derived from using advanced intelli-
gent image analysis method is promising to be a comple-
mentary method for treatment response prediction.

This study had some limitations. The first limitation 
involved the limited sample size and retrospective data 
collection. Accordingly, the developed model should be 
validated in larger well-designed prospective studies, 
which would also enable the collection of more patient 
and tumor-specific clinical information for developing a 
more stable and more accurate model. Second, the ROIs 
were delineated in one single slice, which might not be 
representative of the entire tumor. Third, more complex 
and advanced self-attention methods should be adopted, 
which may further improve the prediction performance. 
Fourth, the two cohorts differ in terms of outcome and 
we cannot exclude the presence of a bias. Fifth, the MRI 
devices were quite different and a more detailed explo-
ration of the role of the technology in the deep learning 
radiomics versus hand-crafted radiomics performance 
would be necessary. Sixth, we did not explore the oppo-
site direction, by switching the two hospitals in build-
ing training/validation and testing models or by a joint 
model, obtained shuffling the two set of MRIs and then 
splitting a training and a testing set.

In summary, this study demonstrated attention mecha-
nism based multi-sequence fusion method was effective 
for nCRT response prediction in LARC, and improved 

prediction performance than hand-crafted radiomics 
method.
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