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Abstract
Background Currently, automatic esophagus segmentation remains a challenging task due to its small size, low 
contrast, and large shape variation. We aimed to improve the performance of esophagus segmentation in deep 
learning by applying a strategy that involves locating the object first and then performing the segmentation task.

Methods A total of 100 cases with thoracic computed tomography scans from two publicly available datasets 
were used in this study. A modified CenterNet, an object location network, was employed to locate the center of 
the esophagus for each slice. Subsequently, the 3D U-net and 2D U-net_coarse models were trained to segment the 
esophagus based on the predicted object center. A 2D U-net_fine model was trained based on the updated object 
center according to the 3D U-net model. The dice similarity coefficient and the 95% Hausdorff distance were used as 
quantitative evaluation indexes for the delineation performance. The characteristics of the automatically delineated 
esophageal contours by the 2D U-net and 3D U-net models were summarized. Additionally, the impact of the 
accuracy of object localization on the delineation performance was analyzed. Finally, the delineation performance in 
different segments of the esophagus was also summarized.

Results The mean dice coefficient of the 3D U-net, 2D U-net_coarse, and 2D U-net_fine models were 0.77, 0.81, and 
0.82, respectively. The 95% Hausdorff distance for the above models was 6.55, 3.57, and 3.76, respectively. Compared 
with the 2D U-net, the 3D U-net has a lower incidence of delineating wrong objects and a higher incidence of missing 
objects. After using the fine object center, the average dice coefficient was improved by 5.5% in the cases with a 
dice coefficient less than 0.75, while that value was only 0.3% in the cases with a dice coefficient greater than 0.75. 
The dice coefficients were lower for the esophagus between the orifice of the inferior and the pulmonary bifurcation 
compared with the other regions.

Conclusion The 3D U-net model tended to delineate fewer incorrect objects but also miss more objects. Two-stage 
strategy with accurate object location could enhance the robustness of the segmentation model and significantly 
improve the esophageal delineation performance, especially for cases with poor delineation results.
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Background
In the past decade, great progress has been made in the 
field of deep learning, leading to its widespread appli-
cation in radiotherapy where it performs tasks such as 
delineation of the clinical target volume and organs at 
risk (OARs), previously done by radiologists manually. 
Automatic segmentation based on deep learning could 
liberate radiologists from the tedious and repetitive work 
[1]. On average, the time for manually delineating OARs 
is about 30 to 90 min, while that for automatic delinea-
tion based on deep learning is less than 2 min [2].

Recently online adaptive radiotherapy has been intro-
duced into clinical application [3, 4], in which the image 
acquisition, target and OARs delineation, radiotherapy 
plan adjustment, and treatment delivery are performed 
sequentially while the patient stays stationary on the 
treatment bed. This process needs to be completed as 
quickly as possible for the comfort of the patient and the 
accuracy of the treatment. Therefore, it is necessary to 
improve the accuracy of the automatic delineation of tar-
get volumes and OARs to reduce the time spent manually 
modifying the delineation.

To continuously improve the accuracy of the automatic 
delineation and reduce the time required for the radi-
ologist’s manual modifications, various deep learning 
models have been proposed and continuously improved 
[5–11].

Currently, multiple studies have focused on all the 
OARs in the treatment site and even the whole-body 
OARs, in which all OARs were automatically delineated 
by a single deep learning model, and satisfactory results 
were achieved with an average dice coefficient of 0.95 
[12]. However, it is a challenging task to delineate small-
size OARs due to the sample imbalance problem. The 
segmentation model tends to focus more on the back-
ground and large-size OARs since they have an advantage 
in terms of pixel counts, which often lends to the under-
segmentation of small-size OARs [13]. To solve this class 
imbalance problem, various new cost functions have 
been proposed to weaken the contribution of the domain 
class such as dice loss [9], focal loss [14], and unbal-
ance loss functional [13], which have been proven to be 
effective. From another perspective, Yunhe proposed 
a two-stage deep learning network for head-and-neck 
small-size OARs automatic segmentation, in which the 
small-size OARs were localized first and smaller images 
were cropped for accurate image segmentation [8]. Sub-
sequent studies based on this strategy mainly apply dif-
ferent segmentation networks for OARs with different 
sizes. However, the effect of object location accuracy on 
segmentation performance was not explored [15].

For thoracic OARs, the average dice coefficient of auto-
matic delineation reaches 0.98, 0.95, 0.90, and 0.86 for the 
lungs, heart, spinal cord, and trachea, respectively [12, 

16, 17]. Nevertheless, caused by the low soft contrast, 
small size, and large shape variability, the dice coefficient 
of the esophagus varied greatly from study to study, rang-
ing from 0.49 to 0.84 [16–22]. Similarly, the 95%HD of 
automatic delineation reaches 2.35, 4.60, 1.64, and 3.48 
for lungs, heart, spinal cord, and trachea, respectively, 
while ranging from 5.18 to 7.16 for esophagus [16–22]. 
The unsatisfactory delineation requires radiologists to 
spend a significant amount of time on manual modifi-
cations and seriously hinders the clinical application of 
esophageal automatic segmentation.

Therefore, in this study, we focus on the esophagus 
automatic delineation based on the classic U-net and 3D 
U-net models, and apply a two-stage strategy, localizing 
the object first and then performing automatic delinea-
tion, to mitigate the effect of class imbalance. We aimed 
to improve the performance of esophagus segmenta-
tion in deep learning by applying a strategy that involves 
locating the object first and then performing the segmen-
tation task. At the same time, the effect of the accuracy 
of object localization on the delineation performance was 
also evaluated. Finally, a detailed clinical evaluation of 
the segmentation results was carried out to summarize 
the performance of the deep learning-based automatic 
esophageal segmentation.

Methods
Training and test cases
For reproducibility and comparability of the results, two 
public datasets with a total of 100 cases were used in this 
study. Of these, 60 cases were from the AAPM Lung CT 
Segmentation Challenge 2017 dataset [22], and 40 cases 
were from the SegTHOR dataset [23]. Both datasets con-
tain entire 3D thoracic CT images and esophagus delin-
eated by experts. The images are all 512 × 512 pixels for 
each slice and the in-plane resolution varies between 
0.90 mm and 1.37 mm per pixel.

In image preprocessing, the image intensity values 
were truncated to the range of [-160, 240] to enhance the 
image contrast, and then the images were normalized 
to have zero mean and unit variance. All images were 
resampled to a 0.97 × 0.97  mm in-plane resolution and 
reformatted into a standard orientation to maintain data 
consistency.

To avoid potential biases in the model due to small 
training sample data sets, 5-fold cross-validation was 
used in this study. For each fold, 68 cases were used 
to train the model, 12 cases were used to validate the 
model and adjust the model hyperparameters, and 20 
cases, never seen by the model during the training and 
validation, were used for the final test of the model 
performance.
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Location and segmentation network
The entire deep learning framework consists of two parts 
(Fig. 1). The first part is an object location model, which 
is a modified CenterNet [24] used to locate the cen-
tral position of the esophagus first. The second part is a 
segmentation network used to delineate the esophagus 
in the cropped image according to the predicted object 
center.

In the modified CenterNet model, the ResNet18 mod-
ule [25], a down-sample pathway, was used to extract 
image features first. The features are gradually recov-
ered through an upsampling pathway to obtain the pre-
dicted Gaussian heatmap, and decoding which yields the 

predicted object center. A supplementary file describes 
the object location network in more detail [see Addi-
tional file 1].

In the segmentation module, the 2D U-net [17] and 3D 
U-net [10] models were used to perform esophagus seg-
mentation respectively, and we found that the 3D U-net 
model performed better in terms of miss delineating the 
object but the 2D U-net model performed better in terms 
of identifying boundaries. Therefore, the segmentation 
was performed using the 2D U-net and the updated 
object center based on the 3D U-net (See Figs. 2, 3, 4).

For the object location network, the input was a set of 
center-cropped images with a size of 192 × 192 pixels, and 

Fig. 1 The architecture of the two-stage deep learning framework. It consists of two parts: object location and object segmentation
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Fig. 4 Dice coefficient and the improvement of dice coefficient for all cases. (a) the dice coefficient of esophagus delineation based on the coarse ob-
ject center. (b) the improvement in dice coefficient of the model after updating the coarse object center to fine object center. The black arrows indicate 
exception cases

 

Fig. 3 Visualization of a case of esophageal delineated based on the coarse and fine object center. From left to right, they represent different slices of the 
same case. The red line is marked by experts and the green line is delineated by deep learning models

 

Fig. 2 The dice coefficient and 95% HD of esophagus delineated by various segmentation models
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the output was the corresponding Gaussian heatmap. 
Focal loss was used to optimize the model. For the seg-
mentation network, the input was a set of cropped sub-
images with 112 × 112 pixels according to the predicted 
object center. The model was optimized via a combina-
tion loss function as follows:

 Lseg = Ldice + αLfocal

Where dice and focal represent the dice loss and focal 
loss, respectively, and the α  represents the weight of 
focal loss, which is adjusted according to the model’s 
bias. For example, the weight was turned up if the model 
tended to have fewer predictions.

The deep learning models were implemented based on 
the Pytorch [26] framework, and all experiments were 
carried out on a Windows system workstation equipped 
with the intel core i7-12700 CPU, NVIDIA 4080 GPU, 
and 32 GB RAM. During training, a set of on-the-fly 
data augmentation strategies was employed to enhance 
the model’s generalization ability, including random flip, 
random rotation within a range of -10 to 10 degrees, ran-
dom noise, and random crop scaling. The data augmen-
tation and deep learning models training procedures are 

described in detail in a supplementary file [see Additional 
file 1].

Evaluation
For quantitative evaluation, the volumetric dice similar-
ity coefficient was used to evaluate the degree of over-
lap [27] between the automatic segmentation result and 
expert delineation, and the 95% Hausdorff distance (95% 
HD) was used to evaluate the farthest distance between 
the two delineated boundaries [28]. Besides, the volume 
ratio was used to evaluate the systematic under or over-
segmentation. The quantitative metrics were compared 
using paired two-sided t-tests.

In addition, we also focused on the cases with poor 
delineation performance, namely the robustness issues 
in clinical applications. Based on the performance of 
esophagus automatic segmentation in the current study, 
cases with dice coefficients lower than 0.75 were defined 
as poor delineation. Using the expert delineation as the 
standard, each slice was reviewed and analyzed. The phe-
nomenon that there is an expert delineation but no model 
delineation in a slice is defined as missing delineation (for 
example, Fig. 5f ). The phenomenon that the expert delin-
eation and model delineation were located in different 

Fig. 5 Visualization of esophagus delineation for typical hard samples. The red line is marked by experts and the green line is delineated by deep learning 
models
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regions (overlap area less than 25% of model delineation) 
in a slice is defined as the delineation with wrong objects 
(for example, Fig. 5b). The incidence of delineating wrong 
objects and missing objects was counted and compared 
across models using a paired-sample design chi-square 
test since it is a comparison of sample rates.

Besides, the slice dice coefficients were interpolated to 
the same length for all cases and then plotted in a graph 
to evaluate the esophagus automatic segmentation per-
formance in different regions since the esophagus is very 
long, spanning the neck, chest, and abdomen.

Finally, the total time of object localization and fine 
segmentation was calculated, to evaluate the feasibility of 
the proposed model in clinical practice.

Results
The 2D U-net and 3D U-net segmentation models were 
trained respectively based on the predicted object center 
from the modified CenterNet, and the dice coefficient 
and 95% HD are shown in Fig. 2. The mean dice coeffi-
cient for the 2D U-net_coarse segmentation model was 
0.807, which was significantly higher than that for the 3D 
U-net model (P < 0.001). Similarly, the average 95% HD 
for the 2D U-net_coarse segmentation model was 3.566 
versus that for 3D U-net with the difference statistically 
(P < 0.001)(See Table 1). In addition, the 2D U-net_coarse 
model performs better with fewer cases of extremely low 
dice coefficients.

However, when we reviewed the delineation result for 
each slice, we found that the incidence of delineating 
wrong objects is lower in the 3D U-net model compared 
with the 2D U-net_coarse model (P < 0.001) (for example, 
Fig. 3a1). The frequency of delineating wrong objects was 
66 in a total of 10,159 slices for the 3D U-net model, while 
that value was 92 for the 2D U-net_coarse model. As for 
the situation of missing objects (for example, Fig. 5f ), the 
frequency was 347, 227 in the total of 10,159 slices for 
the 3D U-net and 2D U-net_coarse models (P < 0.001), 
respectively.

As described above, the 3D U-net model tends to 
locate objects more accurately, but it is more prone to 
missed objects than the 2D U-net. Therefore, the object 
center was updated according to the prediction of the 3D 
U-net first, and another 2D U-net segmentation model 
was trained using the updated object center (fine object 

center). The dice coefficient for the 2D U-net segmenta-
tion model with the fine object center was 0.817, which 
had significant advantages over that of the model with 
the coarse object center (P = 0.01). The 95% HD was 
3.764 and 3.566 respectively for models based on the fine 
and coarse object center, without a statistical difference 
(P = 0.433). The median volume ratio was 1.17, 0.80, and 
0.94 respectively for the 3D U-net, the 2D U-net_coarse, 
and the 2D Unet_fine, while the mean values of the above 
data were 2.2, 1.42, and 1.43 respectively. The frequency 
of delineating wrong objects and missed objects was 63 
and 183 respectively in a total of 10,159 slices for the 2D 
U-net model based on the fine object center, which were 
both lower than those of the models trained based on the 
coarse object center.

The dice coefficient of each case for the 2D U-net 
model based on the coarse object center is shown in 
Fig.  4a, and the improvement of the model in the dice 
coefficient after updating the coarse object center to 
the fine object center is shown in Fig. 4b. The lower the 
dice coefficients of the case, the greater the dice coeffi-
cient improvement after updating the coarse object cen-
ter to the fine object center. After using the fine object 
center, the average dice coefficient was improved by 5.5% 
in the cases with a dice coefficient less than 0.75, while 
that value was only 0.3% in the cases with a dice coeffi-
cient greater than 0.75. In other words, the segmentation 
models based on the fine object center could improve the 
delineation performance, especially for some cases with 
low dice coefficients. However, there were still two cases 
that performed worse after using the fine object center 
compared with the coarse object center. Upon reviewing 
the delineation for each slice in both two cases, we found 
that there were several slices with over-delineation in the 
lower boundary of the esophagus (Fig. 5c).

From a clinical perspective to insight into the improve-
ment of dice coefficient caused by fine object location, 
a case with a large improvement in dice coefficient is 
shown in Fig. 3. We found that wrong objects were delin-
eated at several slices with large location deviations, 
while no significant difference was found in the other 
slice.

It is also important to note that there are still 5 cases 
out of the 100 cases with a dice coefficient below 0.7, 
although the 2D U-net segmentation performance 
improved after using the fine object center. Upon review-
ing all cases with poor segmentation performance, we 
found that there is a large shape variability in some slices, 
as shown in Fig. 5, including huge esophagus, esophagus 
with a large cavity, and low contrast with the surrounding 
tissue. It is prone to delineate wrong objects or miss the 
delineation in these slices with huge shape variability or 
low contrast.

Table 1 Summary of evaluate metrics and p-values for all 
models
models Dice 95%HD volume ratio
model1: 3D U-net 0.771 6.55 2.18
model2: 2D U-net_coarse 0.807 3.57 1.42
model3: 2D U-net_fine 0.817 3.76 1.43
p (model1 vs. model2) < 0.001 < 0.001 0.002
p (model2 vs. model3) 0.010 0.433 0.752
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Finally, the slice dice coefficients were interpolated to 
the same length for all cases, and the dice coefficients 
for different regions of the whole esophagus are shown 
in Fig. 6. The mean slice dice coefficient was lower at the 
upper and lower boundaries due to over-delineation or 
under-delineation of the boundary slices. In addition, the 
dice coefficients were lower for the esophagus between 
the orifice of the inferior and the pulmonary bifurcation 
compared with the other regions.

The time spent for coarse object center localization, 
fine object center localization, and esophagus segmenta-
tion were 33, 30, and 35  s respectively for all 100 cases 
after the data has been read once, which is achievable in 
the clinical scenario because multiple OARs need to be 
segmented. On average, for a 100-slices case, the time 
taken was 0.96  s to execute the entire localization and 
segmentation model.

Discussion
Currently, precise automatic esophagus segmentation 
remains a challenging task due to its small size, low con-
trast, and large shape variation. In this work, we adopted 
a two-stage strategy, focusing on the small-sized esopha-
gus, in which the object center was located first and then 
the automatic segmentation task was performed using 
the cropped image based on the predicted object center. 
We summarized the respective advantages of 3D U-net 
and 2D U-net models, and we found that accurate object 
location can improve the performance of segmentation 
models, and this is obvious for hard sample segmenta-
tion. With accurate object location, our model achieved 
the mean dice coefficients of 0.817 and 95%HD of 3.76 
on the esophagus segmentation task. Which is superior 
to the full-size image model [18] (dice coefficients: 0.770, 
95%HD: 5.64) and basic two-stage strategy model [15] 
(dice coefficients: 0.738, 95%HD: 6.64).

The overall performance of the 3D U-net segmenta-
tion model was found to be inferior to that of the 2D 
U-net model, as evidenced by lower volume dice coef-
ficients and larger 95% HD. Specifically, the 3D U-net 
model tended to miss objects. The frequency of missing 
objects was 3.41% and 2.73% in the 3D U-net and the 2D 
U-net (p < 0.001). This may be attributed to the fact that 
3D models are more complex, with a larger number of 
parameters, and require greater computational resources. 
Therefore, with the same amount of data and limited 
computational resources, the 3D model may not take full 
advantage. A similar phenomenon has been observed in 
several studies. Wenjun et al. trained deep learning mod-
els to automatically delineate the abdominal OARs, and 
the dice coefficients of the esophagus segmented by the 
2D U-net were 0.77 and 0.76 in two cohorts, and those 
were 0.73 and 0.70 for the 3D U-net model [18].

Although the dice coefficient of the 3D U-net seg-
mentation model was lower than that of the 2D U-net 
model, the incidence of delineating incorrect objects in 
the 3D U-net model was much lower than that in the 2D 
U-net model, with the corresponding values of 0.65% and 
0.91%, respectively. This may be attributed to the fact that 
a wider range of contextual features was used in the 3D 
model, which is beneficial for the model to better under-
stand and make use of the spatial information of objects, 
such as shape, size, and location [10]. Especially for the 
esophagus, which is an organ with upper and lower slice 
continuity, it will be more helpful to identify the esopha-
gus based on upper and lower slice information.

In the 2D U-net segmentation, the model performed 
better when the input images were cropped using the fine 
object center compared with using the coarse object cen-
ter, and the main improvement was the ability to reduce 
the incidence of delineating wrong objects. This may be 
attributed to the fact that the contextual information 
around the object is richer and more symmetrical when 

Fig. 6 The dice coefficients of esophagus delineation at different slices
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the object is in the center of the image, which could pro-
vide more adequate information for the model to make 
predictions. In addition, U-net is a model that uses a 
symmetric contraction and expansion structure to cap-
ture the context information of an image and accurately 
locate the target [11]. In the down-sampling step, the fea-
ture map will be cropped, especially at the edges, there-
fore the impact of cropping will reduce when the object is 
at the center of the images.

The phenomenon of sample imbalance is universal, and 
often causes the class with the disadvantageous sample 
size to be ignored, resulting in the bias of the model, 
especially for small-size objects in segmentation tasks. 
This may be the reason why the dice coefficient of the 
esophagus automatic segmentation varied greatly among 
studies [12, 18–20, 22, 29–31]. To address this problem, 
various loss functions have been proposed to reduce the 
impact of class imbalance [32–34]. From another per-
spective, we cropped the useful parts directly from the 
image for deep learning segmentation, which will directly 
reduce the rate of class imbalance. And it is a very use-
ful strategy for small-size organ delineation [8]. Although 
the addition of a separate segmentation model for small-
size organs will increase the total automatic segmenta-
tion time, about 1 s for an OAR, this time is insignificant 
compared to the time it takes for the radiologist to manu-
ally modify the automatic segmentation results [1].

We also observed that the dice coefficients of the 
esophagus behind the heart were significantly lower than 
those for the other sections. This section of the esopha-
gus is adjacent to the heart with numerous surrounding 
tissues and the contrast between the esophagus and the 
heart is not obvious, so it is difficult to distinguish the 
boundary.

In this study, a stable result of esophagus automatic 
delineation with the mean and median dice coefficients 
of 0.817 and 0.827 respectively was obtained using the 
two-stage segmentation strategy and the fine object cen-
ter. Moreover, this value could reach 0.837 and 0.849 
respectively after excluding the influence of upper and 
lower boundaries on volume dice coefficients.

There are also several limitations in the study. First, 
there are still some cases of delineation dice coefficient 
below 0.7, accompanied by the phenomenon of delin-
eating wrong objects or missed delineation. To address 
these hard cases, it is necessary to add similar samples to 
the training set to improve the robustness of the models 
continuously. Second, the dice loss and focal loss were 
combined with a weight, and the weight was adjusted 
according to the ratio of the number of pixels that were 
more or less delineated in the model. It is necessary to 
research the effect of this weight on the segmentation 
result carefully in the future. Third, in recent years, the 
combination of transform and U-net for segmentation 

tasks has attracted much attention and achieved satisfac-
tory results initially [6, 7]. However, no clear advantage of 
this combination was observed in our preliminary exper-
iments. Whether small-size OAR could benefit from 
combining transform models still needs detailed research 
in the future.

Conclusions
In summary, we applied the two-stage strategy of local-
izing the object center first and then performing the seg-
mentation task to delineate the esophagus. Our findings 
showed that the two-stage strategy could improve the 
delineation performance of small-size organs, and fine 
object location could reduce the incidence of poor delin-
eation cases and improve the robustness of models.
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