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Abstract
Background and purpose To investigate the feasibility of synthesizing computed tomography (CT) images from 
magnetic resonance (MR) images in multi-center datasets using generative adversarial networks (GANs) for rectal 
cancer MR-only radiotherapy.

Materials and methods Conventional T2-weighted MR and CT images were acquired from 90 rectal cancer patients 
at Peking University People’s Hospital and 19 patients in public datasets. This study proposed a new model combining 
contrastive learning loss and consistency regularization loss to enhance the generalization of model for multi-center 
pelvic MRI-to-CT synthesis. The CT-to-sCT image similarity was evaluated by computing the mean absolute error 
(MAE), peak signal-to-noise ratio (SNRpeak), structural similarity index (SSIM) and Generalization Performance (GP). 
The dosimetric accuracy of synthetic CT was verified against CT-based dose distributions for the photon plan. Relative 
dose differences in the planning target volume and organs at risk were computed.

Results Our model presented excellent generalization with a GP of 0.911 on unseen datasets and outperformed 
the plain CycleGAN, where MAE decreased from 47.129 to 42.344, SNRpeak improved from 25.167 to 26.979, SSIM 
increased from 0.978 to 0.992. The dosimetric analysis demonstrated that most of the relative differences in dose and 
volume histogram (DVH) indicators between synthetic CT and real CT were less than 1%.

Conclusion The proposed model can generate accurate synthetic CT in multi-center datasets from T2w-MR images. 
Most dosimetric differences were within clinically acceptable criteria for photon radiotherapy, demonstrating the 
feasibility of an MRI-only workflow for patients with rectal cancer.
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Introduction
Recently, Magnetic resonance only (MR-only) radio-
therapy has become a common research focus since it 
first raised, due to the superior soft-tissue contrast of MR 
images compared to computed tomography (CT) [1, 2]. 
Moreover, MR-only radiotherapy avoids additional radia-
tion [3]. However, MR images do not contain electron 
density information, which is necessary for dose calcu-
lation in MR-only radiotherapy [4]. The standard solu-
tion is to generate synthetic CT (sCT) from MR images. 
Lately, with the development of deep learning, it has also 
shown great potential in the generation of sCT. Deep 
learning methods use large-scale image samples more 
efficiently to learn complex MR-to-CT mapping than 
conventional methods [5]. Besides, sCT can be generated 
during the model inference phase in just a few seconds, 
enabling faster model deployment [5].

The 2D Deep Convolutional Neural Network (DCNN) 
were first applied to the generation of sCT from MR 
images in the brain [5]. With the proposal of Generative 
Adversarial Network (GAN) [6], the application of GAN 
to generate images has become mainstream. For example, 
Conditional Generative Adversarial Network (CGAN) 
were used to solve the generation of sCT in the abdo-
men and brain [7–11]. Nevertheless, DCNN and CGAN 
require strictly paired data for training, which severely 
limits their application and increases the difficulty of data 
collection [12]. The CycleGAN was proposed to train the 
model on unpaired data through cycle consistency [13]. 
It was trained on unpaired data and achieved comparable 
results of paired data in the brain [14]. However, cycle-
consistency is often too restrictive which assumes that 
the relationship between the two domains is a bijection 
in CycleGAN [15]. The contrastive learning (CL) loss was 
firstly utilized to enlarge the mutual information between 
the same location of input and synthetic images in CUT 
followed by some improvements, such as NEGCUT and 
F-LSeSim [16–18]. However, the semantic relationship 
between image patches is ignored and all negative image 
patches are considered equal probability patches.

Currently, there are some papers discussing the gen-
eralization of models in generation tasks [19–21], but a 
few researches focus on improving the generalization 
performance in multi-central datasets. This is com-
monly achieved by domain adaptation or using strong 
data augmentation in segmentation tasks [22–25]. How-
ever, domain adaptation needs to retrain the model using 
unseen domain data, reducing the practicability of the 
model [24]. Strong data augmentation, such as color aug-
mentation, could destroy the distribution of original data 
and cannot be applied directly in generation tasks.

In this study, a novel framework was developed to 
enhance the generalization of the model in multi-central 
datasets using the consistency regularization learned 
from semi-supervised learning [26, 27]. The improved 
contrastive learning loss in consideration of semantic 
relationship was employed to enhance the structural con-
sistency between MR and sCT.

Materials and methods
Data acquisition
The study cohort consisted of 90 patients diagnosed with 
rectal cancer from April 2018 to March 2021 at Peking 
University People’s Hospital (PUPH) and 19 patients 
diagnosed with rectal or prostate cancer in public data-
sets from three different Swedish radiotherapy depart-
ments [28]. Enough patient data of rectal cancer with 
consistent standards can be provided in this center. One 
of the aim of this work is to build an MR-only workflow 
for rectal cancer treatment. The data acquisition param-
eters are shown in Table 1.

The age distribution of patients was 43–83 years in 
PUPH cohort. CT scanning was performed with a Phil-
ips 16-row large-aperture analog positioning machine 
with a flat table top. Scan parameters: 140 kV, 280 mAs, 
layer thickness 3 mm. MRI of the pelvis was performed 
using a GE Discovery MR750 3.0T MR scanner with the 
curved table top. The scanning sequence and parameters 
are as follows: High-resolution non-fat-suppressed fast 
recovery fast spin-echo (FRFSE) T2-weighted imaging 

Table 1 The dataset acquisition parameters
PUPH Public datasets

Site 1 Site 2 Site 3
Number of patients 90 8 7 4
MRI
Manufacturer GE Discovery MR750 GE Discovery MR750 Siemens Aera GE Signa PET/MR
Field strength (T) 3 3 1.5 3
Spatial resolution (mm3) 0.67*0.67*7 0.875*0.875*3 0.875*0.875*2.5

1.1*1.1*2.5
0.875*0.875*2.5

CT
Manufacturer Phillips Siemens Toshiba Siemens
Spatial resolution (mm3) 1*1*3 0.98*0.98*3 1*1*2 0.98*0.98*2.5
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sequence, TR 3 200 ms, TE 85 ms, slice thickness 3 mm, 
slice interval 0.5 mm, a field of view 32 cm×26 cm.

T2-weighted MR and CT data were collected for 19 
patients at three different sites in public datasets. All 
patients were scanned using a coil setup that not affects 
the outline of the patient in the radiotherapy treatment 
position with a flat table top.

Preprocessing
External contours of CT and MR images were gener-
ated in Treatment Planning System (TPS) (UIH, Shang-
hai United Imaging Healthcare Co., Ltd.). All CT and 
MR voxels outside the external contour were assigned to 
intensity of -1024 and 0, respectively. The intensities of 
CT images were linearly mapped from [-1024; 1500] to 
[-1; 1]. The intensities of MR images were clipped beyond 
the 95th percentile, and then the intensities were also lin-
early mapped to [-1; 1]. Deformable registration was per-
formed on MR and CT images by NiftyReg open-source 
software [29], and the registration results were revised by 
an experienced physician.

The three-fold cross-validation was used in this study. 
The specific division of data is as follows: 30 cases were 
randomly selected from PUPH cohort and one center 
was picked from public datasets as test datasets and the 
rest data served as train datasets in each fold.

Network architectures
As shown in Fig.  1(a), the proposed CRGAN (Consis-
tency Regularization Generative Adversarial Network) 

contained two generators and discriminators. Wherein 
the generator GCT provides MR to CT mapping, the gen-
erator GMR provides CT to MR mapping. Furthermore, 
the discriminator DMR and DCT were used to distinguish 
between real images and synthetic images [13].

Figure 1a) and b) show the training phase of CRGAN. 
In order to improve the generalization of the model, 
consistency regularization similar to Flexmatch was 
employed to optimize the GCT [26], as shown in Fig. 1b). 
The weak and strong data augmentation was performed 
in the same MR image to obtain the MRw and MRs. In 
weak data augmentation, operations such as like flipping 
along the vertical direction, scaling and clip to certain 
size, random clip and resize, and rotation with random 
degree between 0 ~ 360° were applied without changing 
the value distribution of the image. In strong data aug-
mentation, MR images were further operated with color 
augmentation, includes the methods that will change 
the voxel values of images, such as altering the bright-
ness using gamma changes, applying Gaussian filtering to 
the image. Then the consistency regularization loss was 
added to ensure that the weak and strong augmentation 
MR images would generate similar sCT. Figure 1c) show 
the inference phase of the model.

A 2.5D image was token as input of CRGAN, which 
contains 3 adjacent layers is extract from a 3D image. The 
ADAM optimization was used to minimize the loss func-
tion [30]. CRGAN was initialized using the He_normal 
initialization method [31].

Fig. 1 Illustration of architecture of CRGAN. (a) and (b) are the training phase of CRGAN, (c) is the inference phase of CRGAN
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Generator
The Transformer module was employed in the generator 
of CRGAN, as shown in Fig. 2. The Transformer module 
can pay attention to the global connection of features 
compared with the convolution module [32]. There are 
tremendous work including imaging segmentation and 
translation adopting transformer structures and obtain 
promising performance. It is generally believed that the 
Transformer module is more effective than the convolu-
tion module in extracting deep features [33], so we put 
the Transformer module on the last layer of the encoder 
of the generator.

Discriminator
All the discriminator networks in CRGAN shared the 
same architecture, obtained by spectral normalization of 
the discriminator in the plain CycleGAN [13]. Spectral 
normalization introduces regularity constraints from the 

perspective of the spectral norm of the parameter matrix 
of each layer of the neural network [34], so that the neu-
ral network has better insensitivity to input disturbances, 
thus making the training process more stable and easier 
to converge.

Loss function
In this study, a mixed loss function including adversarial 
loss, cycle consistency loss, consistency regularization 
loss and contrastive learning loss was used as the objec-
tive function, which is defined as follows:

 

Loss = Ladv + Lcycle + Lconsistencyregulation

+ Lcontrastivelearning

The adversarial loss (shown as LGAN in Fig.  1) func-
tion optimized the generator and discriminator. For the 

Fig. 2 Illustration of architecture of generator of CRGAN. IN: Instance Norm, LRelu: LeakyRelu, LN: Layer norm, FFN: Feed Forward Network
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generator GCT and its discriminator DCT, the adversarial 
loss function is defined as

 Ladv (GCT ,DCT ) = DCT (GCT (IMR)) + (1−DCT (ICT ))

Where ICT and IMR represent unpaired input CT and 
MR images. In the training phase, GCT generates a syn-
thetic CT image GCT(IMR) that is close to the real CT 
image, while DCT is to distinguish the synthetic CT image 
GCT(IMR) from a real image ICT. Likewise, the adversarial 
loss functions for GMR and DMR are defined as

 Ladv (GMR,DMR) = DMR (GMR (ICT )) + (1 −DMR(IMR ))

The cycle-consistent loss function optimized the GCT and 
GMR, forcing the reconstructed images GCT (GMR(ICT)) 
and GMR (GCT(IMR)) to be the same as their input ICT and 
IMR. This loss function is defined as

 

Lcycle (GCT , GMR) = ‖GCT (GMR (ICT))− ICT‖
+ ‖GMR (GCT (IMR))− IMR‖

The consistency regularization loss (shown as LCycle in 
Fig.  1. (a)) function optimized the GCT, ensuring MR 
images enhanced by weak and strong augmentation 
would generate similar sCT. This loss function is defined 
as

 Lconsistencyregularization (GCT ) = ‖GCT (IMRw)−GCT (IMRs) ‖

Contrastive learning loss
The CL loss (shown as LCons in Fig. 1. (b)) optimized the 
generator GCT and GMR. The semantic relation consis-
tency (SRC) regularization with the decoupled contras-
tive learning was used [15]. SRC utilizes the semantics 
feature by focusing on the semantic relation between the 
image patches from a single image. In addition, the hard 
negative mining strategy is explored by exploiting the 
semantic relation [15]. This loss function is defined as

 

LCL = γSRC
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where γSRC  and γhDCE  are weighting parameters; JSD 
represents Jensen-Shannon Divergence; zk and zi are the 
corresponding embedding vectors of k-th location and 
i-th location patches of the input image; wk and wi are the 
corresponding embedding vectors of k-th location and 
i-th location patches of the synthetic image; the negative 
sampling is modeled by von Mises-Fisher distribution:

 
z− ∼ qZ−(z−; z, γ) =

1

Nq
exp {γ( zTz− )} pZ

(
z−

)

where Nq is a normalization constant;γ is a hyper-param-
eter determining the hardness of the negative samples.

Evaluation metrics
Referring to the main stream articles of imaging transla-
tion, MAE, SNRpeak and SSIM are three commonly used 
metrics to measure the quality of images. MAE evalu-
ates the voxel-vise similarity between images, SNRpeak 
evaluates the image quality, and the SSIM evaluates the 
structure similarity between two images. To evaluate the 
generalization performance across multi-center data, we 
proposed a new metric GP (Generalization Performance) 
based on the above metrics. To evaluating the similarity 
between a sCT image and real CT, their image quality, 
HU values, and anatomical structures similarity are most 
important aspects, and the metrics mentioned above can 
evaluate the performance from these aspects.

MAE (mean absolute error)
MAE can be used to evaluate the difference in HU values 
between sCT and CT images as follows:

 
MAE =

1

N

N∑

i=1

|CT i − sCT i|

Where the index i represents each voxel of the image.

SNRpeak (Peak Signal-to-noise ratio)

SNRpeak provides an objective measure of 
image distortion or noise level, as follows: 

SNRpeak = 10*log10

(
MAX2

I

MSE

)

SSIM (Structural Similarity index)
SSIM analyzes the similarity between images in terms of 
brightness, contrast, and structure, as follows: C1 and C2 
are constants. 

 
SSIM =

(2µxµy + C1)(2σxy + C2)

(µx
2 + µy

2 + C1)(σx2 + σy2 + C2)

Model’s generalization analysis
We proposed a new metric GP (Generalization Perfor-
mance) to assess the generalization of model on unseen 
datasets. It is computed as follows:
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GP =

MAEseen

MAEunseen
∗ PSNRunseen

PSNRseen
∗ SSIMunseen

SSIMseen

GP is composed of three parts, each of which reflects 
the model’s generalization in MAE, SNRpeak and SSIM, 
respectively. Therefore, this indicator can comprehen-
sively reflect the generalization performance on unseen 
datasets. The seen and unseen datasets are defined as the 
datasets trained on and test on, respectively. In such defi-
nition, seen and unseen datasets are whole datasets, not 
the training or testing splits from one dataset or mixed 
multi-datasets. The larger the indicator is, the better 
the generalization performance is. When the indicator 
value is close to 1, it indicates that the performance of 
the model on unseen datasets is equal to that on the seen 
datasets, indicating excellent model generalization.

Dosimetric analysis
Dosimetric accuracy of sCT images were evaluated by 
clinical rectal cancer treatment planning. A dose of 
5000  cGy was prescribed for the primary tumor target 
and the photon plan was designed for each test data using 
real CT images (TPS, UIH). Then the segmentation and 
plan of real CT image were copied to the sCT image. The 

dose distribution of the plan generated on real CT was 
recalculated on the sCT to investigate the gap between 
them. The dose matrix has a resolution of 3 × 3 × 3 mm3 
and covers the main region of interest (ROI).

Results
Image comparison
The results of the two samples are shown in Fig. 3. The 
first column shows the input MR image and its high-
lighted region. The second to the sixth columns show 
the real CT images, the prediction results of CycleGAN, 
CycleGAN with CL loss, RTGAN (ResTransformer Gen-
erative Adversarial Network), 2.5D RTGAN with CL loss 
and 2.5D CRGAN with CL loss. The first sample was 
selected from validation sets of PKPU that can be con-
sidered as the seen data since the train set included some 
other data from PKPU. The second sample was picked 
from public datasets regarded as unseen data for this 
whole center data were taken as validation datasets.

SCT generated by each model on the seen data were 
accepted in most areas, with good contrast between the 
bone and their surrounding soft tissues in the first sam-
ple. However, there were some mismatches appearing in 
the local bone region in sCT, as shown in Fig. 4b3) and 

Fig. 3 Performance of different models on the seen and unseen datasets
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b5). By adding the CL loss to the model, the edge of bone 
can be improved in Fig.  4b4) and b6). For the second 
sample in the unseen dataset, our proposed model (Fig. 
4(d7)) presented more accurate shape and values of bone 
than that of other models (Fig. 4(d3) ~ Fig. 4(d6)) by add-
ing the consistency regularization.

To evaluate the accuracy of sCT images generated for 
treatment planning, we calculated the MAE, SSIM and 
SNRpeak for the entire outer contour of each patient in 
the test set under each model, as shown in Table  2. As 
can be seen from Table 2, adding the Transformer mod-
ule or using CL loss could improve the result of sCT. 
The performance of sCT could be further enhanced by 
combining both of them into CycleGAN. However, the 
GP values of the above models were relatively low, and 
the generalization performance of the model was greatly 
enhanced after using the CL loss.

The training time of our model with the training data-
set is 6 days, and the inference time is 3s per image due 
to the sliding window strategy on a Nvidia 3090. As a 

comparison, CycleGAN used 5 days of training time and 
2.4 s of inference time with the same equipment.

Model generalization
The Fig.  4 and Table  2 have initially shown us the gen-
eralization of different models in section  “Image com-
parison”. Figure 3 shows the MAE, SNRpeak and SSIM of 
different models on the seen and unseen datasets. There 
was big gap in performance between seen and unseen 
datasets before adopting consistency regularization. This 
gap could be well compensated after using consistency 
regularization in our proposed model.

CL loss
Table  3 shows the effect of CL loss addition on MAE 
of different models. We reported the MAE of the main 
organs in abdomen, including bladder, rectum, and femur 
heads. The performance of sCT was enhanced in both 
bone and soft tissue regions by the introduction of CL 
loss. The result of main organs was shown in Table  3. 
In addition, there was a greater decrease in the MAE in 
bone region, which is consistent with the phenomenon 
observed in Fig. 4.

Dose comparison and Gamma index
For each patient, a photon plan using Volumetric Modu-
lated Arc Therapy (VMAT) was generated and the DVH 
was analyzed for target and critical structures. DVH 
parameters such as mean dose (Dmean), maximum dose 

Table 2 Comparison of MAE, SSIM and SNRpeak of sCT 
produced by different methods in the whole pelvic region
Method MAE↓ SNRpeak↑ SSIM↑ GP↑
CycleGAN 47.129 25.167 0.978 0.545
CycleGAN (w/ CL loss) 43.753 26.211 0.985 0.645
RTGAN 43.704 25.344 0.982 0.66
2.5D RTGAN (w/ CL loss) 42.557 26.268 0.986 0.690
2.5D CRGAN (w/ CL loss) 42.344 26.979 0.992 0.911

Table 3 Comparison of MAE on the soft tissue and bone region for the sCT generated through different methods
Region CycleGAN CycleGAN

(w/ CL loss)
RTGAN 2.5D RTGAN

(w/ CL loss)
2.5D CRGAN
(w/o CL loss)

2.5D CRGAN
(w/ CL loss)

Bladder 61.45 47.92 48.23 52.67 39.82 35.84
Rectum 59.66 47.02 45.45 42.52 42.12 40.44
Femur_Head_L 163.02 157.23 140.23 121.17 134.56 123.75
Femur_Head_R 181.73 163.39 150.34 132.60 140.28 131.89

Fig. 4 sCT images generated by different model. The first and third rows show real MR (a1, c1), real CT (a2, c2) and the sCT images generated by CycleGAN 
(a3, c3), CycleGAN with CL loss (a4, c4), RTGAN (a5, c5), 2.5D RTGAN with CL loss (a6, c6) and our model (a7, c7). The second and fourth rows highlight the 
ROIs outlined by the yellow box on each corresponding image
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(Dmax), D95%, and D50% were calculated for Planning 
Target Volume (PTV), Clinical Target Volume (CTV), 
bladder, left femur head and right femur head. The pre-
scription dose was 50 Gy and 2 Gy/fraction for treatment.

Figure  5 and Table    4 show the comparison of DVH 
obtained from the radiation planning dose calculation 
between real CT and sCT generated by 2.5D CRGAN (w/ 
CL loss). It can be seen that most of the relative differ-
ences in the DVH indicators were less than 1%, indicating 
that the current sCT can meet the needs of radiotherapy 
planning.

We also reported the Gamma index [35] as Table 5 to 
show that the results produced by our results have suf-
ficient Gamma index for clinical use. The gamma indices 
(3 mm, 3%) have been calculated between three-dimen-
sion dose distribution of real CT and those of fake CT 
generated by proposed methods.

Discussion
In this study, we proposed a new model combining con-
trastive loss and consistency regularization for pelvic 
MRI-to-CT synthesis. MR images used in our model 
were single T2 sequences, as suggested in the previous 
study [36]. The experiment results in Table 2 reveal our 
superior performance. Primarily, our model presented 

excellent generalization and performed better than 
plain CycleGAN, where MAE decreased from 47.129 to 
42.344, SNRpeak improved from 25.167 to 26.979, SSIM 
increased from 0.978 to 0.992 and GP increased from 
0.545 to 0.911. Meanwhile, most of the relative differ-
ences in the DVH indicators are less than 1%, which is 
generally considered clinically acceptable. This level of 
accuracy suggests that the sCT provides a reliable esti-
mate of the actual radiation exposure received by the 
patient’s tissues.

There are many algorithms have been employed in seg-
mentation tasks to improve the accuracy of segmenta-
tion on unseen datasets [23–25], and some of them have 
obtained similar segmentation results on unseen datasets 
as on seen datasets [24]. However, it is not required to 
maintain the value distribution of the original data in the 
segmentation task. In order to increase the generaliza-
tion performance of a model, strong data augmentation, 
such as color augmentation, is often used, which disrupts 
the value distribution of the input image. For the genera-
tion task, since the learning target is the image itself, the 
value distribution of the image needs to be maintained 
during the training process, and strong augmentation is 
difficult to be applied directly. Here we adopted consis-
tency regularization similar to semi-supervised learning 

Fig. 5 (a) dose distribution map in CT. (b) dose distribution map in synthetic CT. (c) DVH plot with corresponding PTV and OARs
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[26]. Weak augmentation was used to maintain the value 
distribution of MR data during the training of CRGAN 
and Strong augmentation was used to improve the gen-
eralization performance of the model. Consistency regu-
larization was used to ensure that MR images undergoing 
strong augmentation and weak augmentation generate 
similar sCT. The generalization of 2.5D RTGAN with 
CL loss was poor with a GI around 0.7 and it can be 

improved considerably to 0.91 in our model using consis-
tency regularization. This can also be seen from the Fig. 4 
that the performance of our model on the unseen dataset 
was close to the performance on the seen dataset. These 
demonstrate the effectiveness of using strong data aug-
mentation as well as consistency regularization.

Contrastive learning loss has been shown to be effec-
tive in the generation task [16–18]. In this study, the 
semantic relation was introduced into contrastive learn-
ing and the hard negative mining strategy was explored 
based on semantic relation. The semantic relation can 
enhance the structural consistency of MR and corre-
sponding sCT image blocks. The shape of bone of sCT 
was significantly improved by adding contrastive learning 
loss, as shown in Fig. 4. It can also be seen from Table 3 
that using contrastive learning can effectively improve 
the results of sCT, and the improvement is mainly con-
centrated in the bone region. These show that contrastive 
learning can enhance the structural consistency of MR 
and sCT and improve the results of sCT.

In this study, we also embedded the Transformer block 
into the generator to improve the performance of the 
model. The Transformer module was placed at the last 
layer of the encoder to extract deep features more effi-
ciently. Compared with the original CycleGAN, all the 
performance was improved after adding the Transformer 
module, indicating the superiority of the Transformer 
in extracting deep features, which is consistent with the 
previous studies [33].

The existing clinical workflow can be improved and 
accelerated the efficiency of initial treatment. For TPS 
manufacturers, providing an initial model that can be 
used for multiple centers is very important. It can be 
used to verify whether the entire treatment workflow can 
go successfully. After training with specific center data, 
specialized optimization can be carried out for the center 
to accelerate the implementation of MR-only workflow.

This study has a few limitations. First, the model’s gen-
eralization depends heavily on whether strong augmen-
tation can simulate the unseen dataset better. However, 
Clinical data are usually complex and it is challenging to 
simulate all clinical data through strong augmentation. 
The registration results of paired training data are also 
important, more supervise from experienced physicians 
is required. Therefore, the next step is to improve the 
generalization of the model with the help of a small num-
ber of unseen datasets. More data with standard consis-
tence are also planned to collect in the future for better 
performance.

MR equipment with higher magnetic field intensity can 
provide higher signal-to-noise ratio, which means that 
when converted to pseudo-CT, the image quality will be 
better and the details will be clearer. High field MR can 
provide stronger contrast, making the differentiation 

Table 4 Relative dose differences between sCT and CT plans. 
>0.05: not significant, paired two tailed t-test
DVH indicator CT vs. synthetic 

CT mean relative 
differences(range)

p-
val-
ue

PTV Rectum
Dmean(100%) 0.848(-1.880 to 1.970) 0.208
Dmax(100%) 0.119(-1.130 to 2.161) 0.866
D95(100%) 1.255(0.0200 to 2.492) 0.972
D50(100%) 0.945(-0.890 to 1.956) 0.155

CTV Rectum
Dmean(100%) 0.861(-1.550 to 1.799) 0.486
Dmax(100%) 0.116(-1.130 to 2.288) 0.871
D95(100%) 1.580(0.039 to 2.854) 0.882
D50(100%) 0.918(-0.860 to 1.871) 0.185

Bladder
Dmean(100%) 0.830(-1.520 to 4.751) 0.839
Dmax(100%) 1.149(-0.360 to 2.439) 0.236
D95(100%) 0.677(-3.060 to 1.687) 0.922
D50(100%) 0.926(-1.680 to 3.295) 0.874

Left Femur Head
Dmean(100%) -0.070(-1.110 to 0.871) 0.340
Dmax(100%) 0.016(-1.610 to 1.626) 0.334
D95(100%) 0.260(-1.890 to 1.250) 0.628
D50(100%) 0.800(-1.140 to 1.180) 0.330

Right Femur Head
Dmean(100%) -0.090(-0.750 to 0.530) 0.980
Dmax(100%) -0.180(-3.400 to 1.395) 0.968
D95(100%) -0.180(-1.730 to 3.600) 0.990
D50(100%) -0.250(-1.350 to 1.120) 0.958

Table 5 Relative dose differences between sCT and CT plans. 
>0.05: not significant, paired two tailed t-test
Region CycleGAN CycleGAN

(w/CLloss)
RTGAN 2.5DRT-

GAN
(w/ 
CLloss)

2.5DCRGAN
(w/ CL loss)

External 0.893 0.897 0.903 0.905 0.907
Bladder 0.902 0.852 0.848 0.903 0.951
Femur_
Heads

0.903 0.915 0.922 0.874 0.924

CTV_
Rec-
tum

1.000 1.000 1.000 1.000 1.000

PTV_
Rec-
tum

0.997 0.996 0.996 0.995 0.999
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between different tissues more prominent when con-
verted to pseudo-CT, which helps in the development of 
diagnosis and treatment plans. The field of MR data used 
in our work is 1.5 T, which may limit the image quality 
and further in the practical clinical workflow. Finally, this 
study has explored little about the Transformer module 
and its inherent mechanism.

Conclusion
In this study, we proposed a new model combining con-
trastive learning loss and consistency regularization 
loss for multi-center pelvic MRI-to-CT synthesis. The 
proposed model used a hybrid CNN and Transformer 
module as a generator. Our model presented excellent 
generalization in multi-center datasets. With an applica-
tion in the pelvic region, in which MRI-CT registration 
is particularly hard, this method is promising for radio-
therapy treatment planning and would ease the clinical 
workflow whilst potentially improving its accuracy.
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