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Abstract 

Background Accurate calculation of lung cancer dose using the Monte Carlo (MC) algorithm in CyberKnife (CK) 
is essential for precise planning. We aim to employ deep learning to directly predict the 3D dose distribution calcu-
lated by the MC algorithm, enabling rapid and accurate automatic planning. However, most current methods solely 
focus on conventional intensity-modulated radiation therapy and assume a consistent beam configuration across all 
patients. This study seeks to develop a more versatile model incorporating variable beam configurations of CK 
and considering the patient’s anatomy.

Methods This study proposed that the AB (anatomy and beam) model be compared with the control Mask (only 
anatomy) model. These models are based on a 3D U-Net network to investigate the impact of CK beam encoding 
information on dose prediction. The study collected 86 lung cancer patients who received CK′s built-in MC algo-
rithm plans using different beam configurations for training/validation (66 cases) and testing (20 cases). We com-
pared the gamma passing rate, dose difference maps, and relevant dose-volume metrics to evaluate the model’s 
performance. In addition, the Dice similarity coefficients (DSCs) were calculated to assess the spatial correspondence 
of isodose volumes.

Results The AB model demonstrated superior performance compared to the Mask model, particularly in the trajec-
tory dose of the beam. The DSCs of the AB model were 20–40% higher than that of the Mask model in some dose 
regions. We achieved approximately 99% for the PTV and generally more than 95% for the organs at risk (OARs) 
referred to the clinical planning dose in the gamma passing rates (3 mm/3%). Relative to the Mask model, the AB 
model exhibited more than 90% improvement in small voxels (p < 0.001). The AB model matched well with the clinical 
plan’s dose-volume histograms, and the average dose error for all organs was 1.65 ± 0.69%.

Conclusions Our proposed new model signifies a crucial advancement in predicting CK 3D dose distribu-
tions for clinical applications. It enables planners to rapidly and precisely predict MC doses for lung cancer based 
on patient-specific beam configurations and optimize the CK treatment process.
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Background
Current treatment planning systems (TPS) for radia-
tion therapy (RT) typically employ advanced software to 
address the inverse optimization problem. The primary 
objective is determining the optimal treatment plan and 
RT machine parameters by considering predetermined 
target prescription dose coverage and organ-at-risk 
(OAR) dose limits [1]. However, due to variations in clini-
cal plans for different patients and differences in com-
puter hardware used to calculate the administered dose, 
planners still need to manually adjust dose metrics until 
the patient’s dose distribution agrees with the clinical 
requirements. Treatment planning design is an empiri-
cal and time-consuming process, often taking hours to 
days [2–5], which runs concurrently with vital activi-
ties, such as metabolic processes, occurring within the 
patient’s body. Changes in tumor physiology and pathol-
ogy may also arise, leading to variations in plan quality. 
Plan quality heavily relies on factors such as time for plan 
generation, adherence to institutional guidelines, and the 
planner’s expertise. These factors can result in the gen-
eration of suboptimal treatment plans, ultimately impact-
ing patient outcomes. Additionally, prolonged treatment 
planning significantly impedes the implementation of 
adaptive strategies and may introduce delays in delivering 
RT to patients. These challenges are commonly encoun-
tered in clinical practice and can negatively impact tumor 
control and patients’ life quality.

Research scholars generally desire to expedite the design 
of RT plans by implementing an automated treatment plan-
ning process. This approach aims to minimize the manual 
plan setting component to address the abovementioned 
issues. For instance, integrating automatic segmentation 
subroutines for OARs into TPS has been widely adopted in 
clinical settings. Although these subroutines have demon-
strated favorable clinical performance, they have yet to gain 
full acceptance from physicians, particularly regarding tar-
get area delineation for brain tumors [6, 7]. Currently, sev-
eral solutions have been proposed in the research field. One 
such solution is data-driven knowledge-based planning 
(KBP), which utilizes existing treatment planning datasets 
to predict dose-volume objectives for new patients [8–10]. 
RapidPlan (Varian Medical Systems, USA) is a commer-
cially available TPS that exemplifies this approach [11]. 
These alternative methods for automated planning have 
significantly expedited the planning process for traditional 
intensity-modulated radiation therapy (IMRT), reducing 
the need for human intervention while ensuring the pro-
duction of high-quality RT plans [12–14].

The KBP-based approach still has certain limitations. 
The reason is that the KBP-based approach typically 
utilizes features such as OARs-tumor overlap and dis-
tance-to-the PTV to predict a one-dimensional DVH 
[15]. As a result, these dose-volume objectives are 
insensitive to the spatial variation of doses within the 
delineated structures and are even more limited in their 
assessment of undelineated structures [16]. Conse-
quently, this may lead to suboptimal spatial distribution 
of patient doses regarding plan design. In such cases, 
planners may need to introduce additional auxiliary 
structures and reoptimize the plan manually. In recent 
years, there has been a surge of research interest in 
deep convolutional neural network (CNN)-based pre-
diction of patient plan dose, driven by the widespread 
popularity of open-source deep learning algorithms. 
The primary methodology involves utilizing anatomi-
cal information, such as medical images (e.g., planning 
CT), and delineated information of regions of interest 
(ROIs) as inputs to the network model. The network 
model is trained using the patient’s plan dose as the 
output. Subsequently, only the anatomical information 
must be inputted into the trained network model for 
a new patient to obtain the desired clinically planned 
dose rapidly [17]. This approach eliminates manual 
feature extraction and significantly expedites the treat-
ment planning process, a crucial step in automated RT 
planning.

However, implementing artificial intelligence (AI) in 
clinical practice has been limited to conventional linear 
accelerators (IMRT) [12–14]. Further research is required 
to explore the use of AI in high-precision stereotactic 
radiotherapy (SRT) devices. One unique SRT device is 
the CyberKnife (CK) system, which enables the pre-
cise delivery of high doses to lesions for effective tumor 
destruction [18–20]. Moreover, the CK system protects 
surrounding tissues adequately and reduces treatment 
pain by administering fewer fractions with higher doses. 
Regarding dose calculation, the CK system employs the 
ray-tracing and the Monte Carlo (MC) algorithms. How-
ever, due to computational limitations and lengthy dose 
calculation time, clinical practitioners often compromise 
by favoring ray-tracing algorithms with relatively lower 
calculation accuracy. This compromise, unfortunately, 
leads to inaccuracies in dose calculation, particularly in 
heterogeneous tissues such as the lungs.

In this study, we aimed to address the abovementioned 
issues by directly predicting the dose for the CK MC plan 
using a deep learning method. The method allows for the 
rapid calculation of doses in lung cases. To achieve this, 
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we gathered a collection of lung cancer cases encompass-
ing CT images, contours, and clinical plan information. 
The plan design of these cases strictly followed the imple-
mentation standards of the TG101 report. The treat-
ment procedures were rigorously based on the clinician’s 
expertise, and all received SRT with the CK MC plan.

Meanwhile, it is worth noting that the performance 
of deep learning methods for predicting patient voxel 
doses relies heavily on the training database. In the case 
of CK patients, the number and orientation of the deliv-
ery beams can vary significantly across different central 
institutions. Consequently, a model that relies solely on 
anatomical information (i.e., CT images and deline-
ation information) as the input to a CNN may need 
help to generalize to the more diverse and heterogene-
ous beam configurations. It poses a significant obstacle 
to accurate dose prediction for CK patients. We have 
explored the potential benefits of incorporating anatomi-
cal and beam information into a network to address this 
issue and enable the automation of clinical planning for 
CK. This approach aims to create a robust model that 
accommodates variable beam configurations. By doing 
so, we have developed a generalized model that allows 
for rapid MC dose prediction using deep CNNs. This 
approach expedites the planning design process and 
ensures the accuracy of dose calculations. As a result, the 
clinical implementation of automatic plans based on this 
approach becomes more reliable.

Methods
Data preparation
In this retrospective study, we collected a dataset of 92 lung 
cancer patients who underwent treatment with the CK 
system at our hospital from 2019 to 2022. All patients’ CT 
images were obtained from the same scanner (SIEMENS 
Somatom Definition AS64 CT scanner, Germany). The RT 
doses for these patients were calculated using an MC algo-
rithm, and they received SRT. The uncertainty of the MC 
calculations was 1%, and the plan optimization was carried 
out using a fixed cone (typically, two cones are selected for 
a patient plan). We identified 86 eligible lung cancer cases 
after screening the case database. This screening was neces-
sary since some patients had a target volume of more than 
100  cm3, which deviated from the typical clinical presenta-
tion and could impact the performance of the deep learning 
model. In addition, the treatment plans were obtained from 
the CK TPS (Accuray, System Version: CyberKnife 3.3.0, 
Software Version: Multiplan 4.0.2, USA). According to the 

guidelines provided by the AAPM TG101 [21], the pre-
scribed dose for the planning target volume (PTV) in lung 
cancer cases ranged from 42.5 to 60  Gy, with a planned 
fraction range of 4–5. To mitigate the impact of variations 
in the prescribed dose on the training results of the model, 
we normalized the planned dose by dividing it by the cor-
responding prescribed dose. We randomly divided the lung 
cancer patients into two datasets: 66 cases for training/vali-
dation and 20 cases for testing. In addition, it is essential 
to note that all patient datasets involved in medical ethical 
review are listed separately at the end of the article, and the 
use of this data was strictly for academic scientific research 
purposes.

Overview and model architecture
Figure  1 illustrates the comprehensive workflow of our 
study methodology, along with the network model struc-
ture of the 3D U-Net. Initially, we employed a binary 
mask to extract the target area and collected delineation 
information on the OARs for all cases. These and the 
patient’s CT images formed the Mask baseline control 
group. Subsequently, we performed dimensional match-
ing between the extracted binary mask of the ROIs and 
the CT images, aligning them with the output 3D dose 
matrix. Following this, we employed an encoding algo-
rithm to convert the patient’s beam information into a 
3D beam matrix. The specifics of this encoding algorithm 
can be found in the accompanying brief “fake program” 
shown in Algorithm  1. Subsequently, we incorporated 
this encoded beam matrix into the training channel, 
forming the AB experimental group (anatomical and 
beam information). These inputs were then fed into 
the 3D U-Net model for training. The model that dem-
onstrated the best performance on the validation set 
was selected for data testing. During the testing phase, 
the channel input information from the test set and the 
selected optimal model were utilized to infer the corre-
sponding 3D dose maps. Finally, we conducted qualita-
tive and quantitative analyses of the predicted dose files 
to evaluate the model′s performance. It is important 
to note that our proposed method relies on the fluence 
volume of CK treatment plan beam information. Con-
sequently, generating executable plans necessitates CK 
beam optimization and beam delivery.

During our study, we observed significant variations in 
the contour structure from case to case. These differences 
arose due to variances in institutional guidelines (across 
various treatment centers) and in planners′ the individual 
skills and preferences (within the same treatment center). 
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Fig. 1 The overall workflow of our dose prediction method and 3D U-Net model architecture
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As a result, achieving a unified input channel for the model 
became challenging. To address this issue, we replaced the 
missing portions of the same OARs with an empty matrix 
(all zeros matrix). Additionally, we explored methods to 
enhance the original contours under the specific beam 
configuration. In the next step, we utilized the MIM soft-
ware (Version: 6.9.5) to modify the contour files to stand-
ardize the delineation information for the patient’s OARs. 
Reintroducing the complementary contour structure fos-
tered discussions on enhancing the delineation consider-
ing the overall beam configuration.

Moreover, we delineated the halo (Rings with diam-
eters of 0.5 cm, 1 cm, 2 cm, and 5 cm) for each patient’s 
target area, utilizing the unified delineation structure for 
all patients. It enabled us to discuss the enhancement 
under the beam configuration by incorporating compre-
hensive delineation information for the target area halo. 
To summarize, we designed six comparison tests to eval-
uate the effectiveness and performance of the proposed 
approaches:

• The original contouring group, MaskO and ABO.
• The general whole contouring group, Mask and AB.
• The general whole contouring group by adding the 

target halo, MaskR and ABR.

The U-Net network model has gained widespread pop-
ularity since its publication in MICCAI in 2015 [22]. Its 
well-established structure is familiar, so we will only briefly 
introduce and focus on the essential details of the 3D U-Net 
model we constructed. Illustrated in Fig. 1, the model con-
sists of either 12 input channels (Mask baseline control) or 
13 channels (AB experimental group), with a 96 × 96 × 32 
randomly sampled 3D matrix. It employs four-fold upsam-
pling and downsampling and incorporates a densely con-
nected layer at each hierarchical level, creating a ‘dense 
structure’ [23–26]. Each dense block encompasses a ReLU 
activation process, followed by convolution (3 × 3 × 3 ker-
nel size), batch normalization, and connection to the pre-
vious layer. Zero padding is applied to each convolution, 
with 12 channels allocated to each layer. The 3D U-Net 
model undergoes downsampling via max pooling (2 × 2 × 2 

kernel size) and symmetrical upsampling via deconvolution 
(2 × 2 × 2 kernel size, channel = 80). The final hierarchical 
layer of the convolution generates a single-channel matrix, 
which serves as the output matrix.

Beam configuration representation
Based on the CK delivery and patient setups, a simplified 
schematic of the specific beam encoding model process 
is illustrated (Fig. 2). Simplified linear accelerator (Linac) 
treatment head modeling was implemented. A dummy 
‘radioactive source’ was considered the initial X-ray exci-
tation point. The distance from this source to the beam 
exit at the lower end of the secondary collimator (treat-
ment head, point b) was set at around 40 cm, as specified 
in the treatment head parameter specification provided 
by the manufacturer–the processing steps of transform-
ing CK case beam information into a coding matrix in 
Algorithm 1. Using the formula, we modeled each point 
in the beam matrix and saved the result as the “beam 
encoding matrix.“

 where,
(1)
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∑
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∑
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Algorithm 1 Simplified beam coding

Training and validating the model
For the 86 lung cancer cases, the optimization was per-
formed using the MC algorithm. We randomly selected 
66 cases for training and 20 cases for testing. The model 
input matrix comprised 12 or 13 channels, depending 
on whether it was the Mask baseline or AB experimental 
model. The first channel corresponds to CT image infor-
mation, while channels 2 to 12 encompass the contour 
information of various ROIs, such as PTV, GTV, body, 
lung_L, lung_R, heart, esophagus, spinal cord, trachea, 
and two auxiliary structures. The final channel repre-
sents the beam encoding matrix information. The train-
ing loss, calculated using the mean square error (MSE), 
was defined as the difference between the predicted dose 
 (Dpre) and the ground truth dose  (Dgt), as shown in the 
following Eq. 

The variable i represents the voxel index, while n rep-
resents the total number of voxels. The 3D U-Net train-
ing was performed on a server with a 72-core Intel(R) 
Xeon(R) Gold 6139 M CPU @ 2.30 GHz and four of 24 
GB NVIDIA GeForce RTX 3090s, with TensorFlow-
GPU version 2.4.0 platform. The training incorporated 
the Adam optimizer with an initial learning rate of 1e 
−4. The learning rate decayed exponentially from  1e−4 to 
 1e−6 during the CNN network training. One hundred 
randomly selected slices were collected for each case, 

(2)loss(pre, clinical) =
1

n

n
∑

i=1

(

Di
pre − Di

gt

)2

Fig. 2 A simplified schematic of the specific beam encoding model 
process. a Simplified schematic diagram of the treatment process 
of CK; b Transversal visualization of beam encoding and dose 
matrices
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and the batch size was fixed at 2. Adding dense blocks 
in the network resulted in an extended training process. 
The model training was halted after 60 epochs, as the loss 
value for both the training and validation data had stabi-
lized. The training duration for these 60 epochs encom-
passed approximately ten days. Upon successful model 
training, the complete 3D dose distribution tensor con-
sisting of 96 × 96 × 32 voxels could be swiftly predicted for 
clinical deployment in patients requiring CK treatment 
(within a few minutes). Incorporating the beam encod-
ing information in addition to the binary mask provides 
a more explicit representation of the dose distribution 
along the beam trajectory near the target area. Conse-
quently, this reduction in learning difficulty significantly 
expedited the convergence rate of the network training. 
The learning rate had typically decreased to 1e-6 within 
the first 20 epochs.

Model performance
We employed multiple composite metrics to assess the 
predicted dose distribution of each model group. Initially, 
we computed the 3D gamma passing rates between the 
predicted and ground truth doses, considering the overall 
voxel (Body), target area (PTV), and OARs. Furthermore, 
the new conformance index (nCI), homogeneity index 
(HI), and gradient index (GI) were calculated based on 
the clinical plan reference criteria [27, 28], employing the 
following Eq. 

(3)nCI = (TV × VRI )/(TVRI × TVRI )

(4)HI = D5/D95

Additionally, we introduced a simplified measure 
known as the structural similarity index measure (SSIM) 
to assess the similarity between two digital images. This 
measure combines three components, luminance, con-
trast, and structure, of two digital images (X, Y) to com-
prehensively assess image quality by comparing the 
observed image to the reference image. The simplified 
formula is presented below:

µ x  and µ y  denote the mean values of x and y, while 
σ 2

x and σ 2
y  represent the variances of x and y, respec-

tively. Additionally, σ xy denotes the covariance between 
x and y. Constants are included to ensure numerical 
stability in the calculations, where  C1=(k1L)2(k1 = 0.01) 
and  C2=(k2L)2(k2 = 0.03). The variable L represents the 
dynamic range of the pixel values. In this case, it is set 
to the prescribed dose value for the corresponding case 
provided by the clinical plan.

We computed the average absolute error in the relative 
prescription dose for both the mean and maximum doses 
of the AB and Mask models, compared to the clinical 
dose  (Dc), across all six experimental groups. Addition-
ally, we examined the variations in critical indicators for 
the high dose region of the target, including  D98,  D95,  D90, 
 D50,  D5, and  D2, as well as isodose volume percentages 
and isovolumetric dose values (% of prescription dose), 
for several OARs. We calculated the absolute dose dif-
ferences between the predicted and ground truth doses 

(5)

GI =
(

volume of 50% isodose line
)

/

(

volume of prescription isodose line
)

(6)SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)

Table 1 The gamma passing rates of the body and target area in lung cancer cases (mean ± SD, p value)

Annotation The gamma passing rate (GPR) for the body is calculated globally, considering the patient as a whole, while the GPR for the PTV (target area) is calculated 
locally, focusing on a single ROI. Both use a dose threshold of 10% of the reference dose

Input Body PTV

3 mm/3% 2 mm/2% 3 mm/3% 2 mm/2%

MaskO 69.35%±13.64% 51.29%±13.92% 80.21%±11.63% 61.19%±15.90%

Mask 72.90%±13.62% 59.43%±14.85% 98.67%±2.01% 91.79%±9.08%

MaskR 82.44%±11.51% 68.47%±12.59% 95.33%±5.44% 88.31%±9.74%

ABO 97.30%±2.87% 90.80%±6.37% 98.83%±1.40% 94.84%±4.93%

AB 97.45%±2.88% 90.93%±6.63% 99.39%±0.90% 95.90%±3.91%

ABR 97.27%±1.85% 88.65%±4.53% 99.47%±0.86% 96.33%±3.36%

Improvement (mean, p value)

 Comparison 

  MaskO versus ABO 48.42% (< 0.001) 98.82% (< 0.001) 25.96% (< 0.001) 65.58% (< 0.001)

  Mask versus AB 39.63% (< 0.001) 66.56% (< 0.001) 0.77% (0.166) 6.02% (0.078)

  MaskR versus ABR 21.03% (< 0.001) 35.42% (< 0.001) 4.71% (< 0.005) 10.51% (< 0.002)
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at each voxel. Based on these differences, we generated 
a dose map and an inter-dose difference map. Finally, we 
compared the DVHs for the lung cancer patients in the 
beam configuration group, focusing on each ROI.

Additionally, to account for variations in beam tra-
jectory values and evaluate the accuracy of the Mask 
and AB model’s predicted spatial distribution of doses, 
we computed the Dice similarity coefficients (DSCs) 
for isodose volumes ranging from 0 to 110% of the pre-
scribed dose. These coefficients were compared to those 
obtained for the clinical dose  (Dc). To facilitate this analy-
sis, three-dimensional binary masks were generated for 
each isodose volume, encompassing all voxels with doses 
equal to or exceeding N% of the prescribed dose in the 
predicted dose (Y) and the clinical delivery dose (X). Sub-
sequently, the following operations were conducted on 
these three-dimensional binary masks (X and Y):

(7)DSC =
2|X ∩ Y |

|X | + |Y |
=

2× Viso−p × Viso−c

Viso−p + Viso−c

where Viso−p and Viso−c denote the specific isodose vol-
ume of prediction and clinical truth, respectively. Addi-
tionally, it is worth noting that all dose deviation values 
were transformed into relative prescription dose errors.

Results
Gamma analysis of body and target area
Using the predicted and clinical doses, we calculated the 
3D gamma passing rates for the overall voxel (Body) and 
the target area (PTV). The calculation was performed 
using open-source software 3D Slicer (version 4.11) [29], 
with evaluation criteria set at 3  mm/3% and 2  mm/2%. 
The results in Table  1 demonstrate that our proposed 
methods for incorporating beam configurations (the last 
three methods) yield accurate dose predictions in both 
the body and target areas while maintaining robustness 
in high and low-dose regions. Conversely, the general 
dose prediction methods for IMRT (MaskO and Mask) 
employed for dose prediction in CK treatment, particu-
larly for the overall body dose, were found unsuitable. 
Including beam encoding information enables the model 

Table 2 The critical indicators of the target area and SSIM in lung cases (mean ± SD)

Annotation The target area’s nCI, HI, and GI are critical indicators to evaluate plan quality in clinical practice. The closer the nCI is to 1, the better the result is. The 
structural similarity index measure (SSIM) indicates the similarity quantifier between the observed and target images, between 0 and 1. The closer to 1, the better the 
result is

Input nCI HI GI SSIM(Body) SSIM(PTV)

Clinical plan 1.0173 ± 0.0226 1.3435 ± 0.0210 1.0171 ± 0.0221 – –

MaskO 1.4943 ± 0.2675 1.4095 ± 0.0414 1.4924 ± 0.2644 0.8836 ± 0.0636 0.9873 ± 0.0069

Mask 1.0201 ± 0.0232 1.3265 ± 0.0266 1.0201 ± 0.0232 0.9088 ± 0.0378 0.9954 ± 0.0027

MaskR 1.0455 ± 0.0623 1.3402 ± 0.0318 1.0453 ± 0.0618 0.9363 ± 0.0240 0.9951 ± 0.0016

ABO 1.0209 ± 0.0232 1.3299 ± 0.0307 1.0208 ± 0.0230 0.9636 ± 0.0107 0.9953 ± 0.0018

AB 1.0141 ± 0.0185 1.3057 ± 0.0276 1.0140 ± 0.0182 0.9554 ± 0.0128 0.9952 ± 0.0019

ABR 1.0085 ± 0.0141 1.3093 ± 0.0312 1.0083 ± 0.0135 0.9794 ± 0.0043 0.9955 ± 0.0020

Table 3 The gamma passing rates of OARs in lung cases (mean ± SD, p value)

Annotation Considering the small size of the OARs and the low-dose region in the lung cancer case, the dose threshold used was 1% of the reference dose for each 
selected OAR

Input Lung_L Lung_R Heart Esophagus Spinal cord Trachea
3 mm/3% 3 mm/3% 3 mm/3% 3 mm/3% 3 mm/3% 3 mm/3%

MaskO 77.53%±16.75% 75.64%±17.29% 75.05%±10.07% 68.69%±20.33% 69.53%±19.89% 77.78%±21.79%

Mask 78.35%±19.90% 75.85%±20.08% 76.19%±14.59% 64.66%±21.46% 73.66%±21.03% 76.57%±21.38%

MaskR 87.90%±8.49% 84.15%±11.60% 73.45%±16.19% 73.09%±21.01% 83.75%±12.10% 85.59%±12.38%

ABO 96.64%±2.86% 95.73%±6.01% 94.37%±6.90% 96.28%±6.11% 99.69%±0.84% 97.34%±5.81%

AB 98.22%±2.06% 95.09%±6.69% 94.06%±7.42% 97.05%±7.39% 99.81%±0.62% 97.81%±5.47%

ABR 98.46%±1.46% 95.84%±3.05% 97.61%±4.93% 94.70%±10.85% 99.85%±0.55% 96.85%±8.24%

Improvement (mean, p value)

 Comparison 

  MaskO versus ABO 32.07% (< 0.001) 35.47% (< 0.001) 28.34% (< 0.001) 59.89% (< 0.001) 62.81% (< 0.001) 44.95% (< 0.001)

  Mask versus AB 36.51% (< 0.001) 41.07% (< 0.001) 29.09% (< 0.001) 71.92% (< 0.001) 57.22% (< 0.001) 43.47% (< 0.001)

  MaskR versus ABR 13.10% (< 0.001) 16.43% (< 0.001) 42.28% (< 0.001) 43.16% (< 0.001) 22.08% (< 0.001) 16.02% (< 0.005)
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to learn both the high doses in the target area and the low 
doses in the trajectory of the treatment beam surround-
ing the target area.

The comparative results of six methods across three 
groups reveal that adding beam-encoding information 
to the original mask significantly improves model perfor-
mance for the overall voxel and target area (MaskO and 
ABO). Such improvement is crucial in diverse clinical 
scenarios. Despite variations in clinical data, our encoded 
beam information consistently yields accurate prediction 
results. Furthermore, it is noteworthy that the complete 
delineation information plays a fundamental role in pre-
dicting the dose in the target area (Mask and MaskR). 
The dose prediction in the target area is highly accurate, 
regardless of the addition of beam encoding information, 
and the model’s performance improvement diminishes 
with its inclusion. Incorporating a halo (Rings) around 
the target area necessitates additional delineation, lead-
ing to additional time and effort. However, if the target 
halos are precisely added during target delineation, this 
would enhance the overall body dose prediction, espe-
cially when no beam encoding information is added 
(MaskR). Notably, including a target halo input model 
suggests a potential influence on the prediction of sur-
rounding OAR doses.

Critical metrics and SSIM
In addition to that, we also analyzed three critical met-
rics in the clinical plan design for the target area. These 
metrics include the new conformity index (nCI), homo-
geneity index (HI), and gradient index (GI). The results of 
the calculations are presented in Table 2. It was observed 
that the nCI, HI, and GI for all five methods, except the 
MaskO method, matched well with the clinical plan. On 
the other hand, models that solely relied on the origi-
nal mask information exhibited poor performance in 
all the critical indicators for the target area, as shown in 
Table 1. However, when the beam encoding information 
was incorporated (ABO method), there was a significant 
improvement in the critical indicators for the target area. 
Meanwhile, the other four methods did not show any 
significant differences compared to the clinical plan, and 
the critical indicators for the target area were minimal 
after the inclusion of the beam encoding information. It 
emphasizes the importance of having complete delinea-
tion information in accurately predicting the dosage for 
the target area.

In this context, a simplified structural similarity index 
measure (SSIM) was introduced to assess the similar-
ity between two digital images. This measure was uti-
lized to estimate the image quality of an observed image 
(predicted dose, X) about a reference image (clinical 

Fig. 3 Quantitative comparison of six methods in three groups of experiments. In the first row, the first image is the dose distribution 
of a representative clinical plan for lung cancer cases, used as Ground truth. The other images are the predicted model results of the six methods. 
The second row shows the absolute differences between each method’s clinical and predicted plans. The last row shows the DVHs of the clinical 
and predicted plans in each method, adding the beam encoding information containing the results of target areas and OARs
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dose, Y). The overall SSIM was calculated for the three-
dimensional dose matrix of the body and PTV regions, 
as displayed in the last two columns of Table 2. The cal-
culation results indicate that the AB model exhibits an 
overall enhancement in the body region compared to the 
Mask model. However, in the PTV region, both models 
demonstrate similar performance. This finding also aligns 
with the gamma passing rate calculation, suggesting that 
the AB model accurately predicts beam traces akin to the 
clinical plan. Conversely, the Mask model solely predicts 
the average dose range within the target area.

Gamma analysis of OARs
In addition, we conducted an assessment of the dispari-
ties between the predicted and clinical dose distributions 
for each OAR. Table 3 provides the gamma passing rates 
calculated at the 3 mm/3% criteria for OARs in lung can-
cer cases. The longitudinal comparison in Table 3 shows 
that the Mask and AB models exhibit minimal differences 
in their respective input structures. However, the MaskR 
method, which includes the addition of target halos, 
demonstrates superior performance compared to the first 
two methods. The model’s prediction is satisfactory for 
the latter three methods, incorporating beam encoding 
information for immense- and miniature-volume OARs. 
This observation further verifies the effectiveness of our 
developed beam encoding algorithm, as it enables accu-
rate prediction of beam trajectory dose.

Furthermore, the transversal comparison reveals that 
the prediction of small-volume OAR (spinal cord) dose 
is more accurate than that of the immense-volume OAR 
(heart). Additionally, among the six methods, the dose 
distribution of the left lung is better predicted than that 
of the right lung. This discrepancy could be attributed to 
the fact that the left lung predominantly serves as the RT 
target area in the test data, resulting in a superior predic-
tion of its dose distribution compared to that of the OAR.

Moreover, comparing the results of the six methods in the 
three groups shows that the improvement in model perfor-
mance when beam encoding information is added to the 
available full mask is most pronounced for all OARs (Mask 
and AB). The improvement shows a less pronounced effect 
for the MaskR and ABR groups compared to the other two 
groups. It should be noted that the predicted improvement 
in the irradiated dose for the heart is particularly significant 
in the MaskR and ABR groups, likely because of the beam 
trajectory transversing the heart and the constraining effect 
of target halos delineation.

Quantitative comparison
Based on a quantitative comparison of six methods in 
three groups of experiments (Fig.  3), it is evident that 

the predicted dose distributions around the target area 
(referred to as beam trajectory dose) are well aligned with 
the clinical plan when the beam encoding information is 
incorporated into the other three training methods, as 
opposed to using only the input binary mask. Conversely, 
the predicted dose around the target area appears blurry 
for the three methods relying solely on binary mask 
input. These methods cannot accentuate the dose within 
the clinical target area, indicating that the network model 
cannot effectively learn the dose trajectory for multiple 
beam configurations based solely on the patient’s ana-
tomical information. Consequently, the model compro-
mises the data and yields predictions of a fuzzy dose.

The second row displays maps illustrating the absolute 
difference in dose distribution between the predicted 
and clinical doses. Analysis of the dose difference maps 
reveals that while the prediction results for the target area 
(high dose region) indicate acceptable accuracy, the dose 
predictions surrounding the target area are extremely 
poor for the three methods that solely utilize binary mask 
input. The presence of errors in the mid-dose region 
within numerous voxel patches significantly increases the 
likelihood of surpassing the prescribed dose limits for the 
OARs, rendering it unacceptable within a clinical plan. 
The AB and ABR methods demonstrate more reasonable 
predictions, with maximum dose point differences below 
6  Gy for lung cancer cases and minor dose differences 
(order of magnitude in cGy) for most voxels.

DVHs are valuable for optimizing the clinical plan-
ning process. The third row visualizes the DVHs of the 
ROI dose and volume differences for the three methods, 
including the addition of beam encoding information. 
The four-line types represent the dose volume histograms 
of the clinical plan and the three comparison methods. 
The predicted doses for all three methods, in both the 
target area and the OARs, closely match the clinical plan 
with slight volume deviations, primarily in the low-dose 
region, which falls within clinical acceptability.

In summary, incorporating beam configurations has 
significantly improved the model’s accuracy in predict-
ing dose distribution. It maintains strong robustness in 
the overall voxel, target area, and OARs, highlighting the 
model’s excellent generality.

Discussion
Prior knowledge-based planning (KBP) techniques have 
recently been well-developed [15]. The use of deep con-
volutional neural networks (CNNs) in the RT domain 
has become increasingly common. However, previous 
deep-learning-based dose prediction studies have mainly 
focused on IMRT or VMAT (volumetric modulated arc 
therapy) plans [12, 30–32], with limited research on SRT 
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(e.g., CyberKnife) dose prediction. This study aimed to 
accurately and efficiently predict the MC dose of hetero-
geneous tissue tumors, such as lung cancer. To achieve 
this, we collected lung cancer cases, included beam 
encoding information from the RT plan in the training 
phase, and finally accurately predicted the dose distribu-
tion for CK lung cancer cases. Through robust learning 
of beam configuration, the deep learning model enables 
quick and accurate dose calculation, eliminating the need 
for time-consuming, redundant TPS calculations. It sig-
nificantly improves the operational efficiency of planning, 
providing planners with a reference for setting objective 
constraints, optimizing the SRT plan design process, and 
guiding clinical practices. Therefore, this method solves 
the extended time required for MC dose calculations in 
clinical practice for patients with lung cancer and other 
heterogeneous tissue tumors. Additionally, it can serve as 
a viable and potential platform for plan validation.

The AB model showed improvements in several ROIs, 
including the target area and OARs, when comparing 

the isovolumetric dose values (% of prescription dose) 
and the isodose volume percentages. Table  4 presents 
the clinically relevant dose-volume metrics commonly 
used to evaluate CK treatment plans for lung cancer in 
the target areas and OARs of both models. Furthermore, 
the AB model demonstrated superior performance to 
the Mask model in most situations, exhibiting better 
predictive accuracy across all considered dose-volume 
metrics. While the mean error differences were gener-
ally low for most metrics (approximately 2% for the target 
area and within 3% for the majority of the OARs), there 
were specific metrics, such as lungs  V5 and trachea  D2, 
that showed errors of approximately 4% and within 3.5%, 
respectively. Heart  V10 and spinal cord  D2 exhibited sig-
nificant reductions, with values of less than 1% and 2%, 
respectively.

To quantitatively analyze the differences in dose 
between the PTV and OARs in patients using the six 
methods, we generated histograms of the average abso-
lute error and standard deviation (SD) for the mean and 

Table 4 Mean absolute error and standard deviation (mean ± SD) for relevant dose-volume metrics on the target and several organs 
for lung cancer testing for the Mask and AB models. The values are expressed as a percentage of the prescription dose (ranging from 
42.5 to 60 Gy) for the metrics reporting the dose received by x % of volume  (Dx) and an absolute difference for the metrics reporting 
the volume (in %) receiving a dose of y Gy  (Vy)

Annotation Lungs mean left and right lungs as a whole minus target

Mask Model AB Model

MaskO Mask MaskR ABO AB ABR

PTV

D98 (% of  Dpre) 16.11 ± 3.31 3.68 ± 3.18 2.98 ± 2.82 2.10 ± 1.31 2.05 ± 1.25 2.64 ± 1.92

D95 (% of  Dpre) 14.45 ± 2.82 4.36 ± 3.32 2.55 ± 1.80 2.19 ± 1.21 2.39 ± 1.60 3.30 ± 1.86

D90 (% of  Dpre) 13.12 ± 2.76 5.15 ± 3.85 3.03 ± 1.75 2.67 ± 1.36 2.92 ± 1.66 3.86 ± 1.86

D50 (% of  Dpre) 12.60 ± 3.42 6.08 ± 4.08 4.29 ± 2.97 3.34 ± 2.00 2.93 ± 1.74 4.04 ± 1.55

D5 (% of  Dpre) 13.67 ± 3.43 4.70 ± 3.04 3.47 ± 2.94 2.27 ± 1.82 1.80 ± 1.55 1.56 ± 1.30

D2 (% of  Dpre) 12.07 ± 3.79 5.59 ± 3.91 3.52 ± 3.21 2.58 ± 1.98 1.97 ± 1.51 1.70 ± 1.44

Lungs

Dmean (% of  Dpre) 1.47 ± 1.09 1.99 ± 1.43 1.11 ± 0.57 1.13 ± 0.53 1.92 ± 0.45 1.50 ± 0.21

V5 (% of volume) 5.53 ± 5.52 8.56 ± 6.91 3.30 ± 2.10 3.96 ± 3.35 4.49 ± 3.50 4.02 ± 1.77

V20 (% of volume) 0.74 ± 0.74 0.84 ± 0.83 0.47 ± 0.44 0.24 ± 0.17 0.24 ± 0.17 0.46 ± 0.26

V30 (% of volume) 0.52 ± 0.57 0.31 ± 0.41 0.22 ± 0.19 0.10 ± 0.07 0.13 ± 0.08 0.23 ± 0.14

Heart

V10 (% of volume) 0.77 ± 1.28 1.02 ± 1.35 0.69 ± 1.30 0.89 ± 1.78 0.83 ± 1.94 0.69 ± 1.53

Esophagus

D2 (% of  Dpre) 4.98 ± 3.43 5.27 ± 4.31 3.82 ± 4.71 2.77 ± 2.38 2.67 ± 1.98 2.90 ± 2.67

V10 (% of volume) 5.44 ± 8.12 4.29 ± 7.73 5.05 ± 11.80 3.04 ± 5.37 3.36 ± 5.81 5.88 ± 10.19

Spinal cord

D2 (% of  Dpre) 5.28 ± 2.90 4.68 ± 2.92 4.75 ± 3.50 1.78 ± 1.22 2.23 ± 1.32 1.24 ± 1.30

Trachea

D2 (% of  Dpre) 5.95 ± 3.73 6.63 ± 4.07 5.47 ± 4.47 3.37 ± 2.10 3.26 ± 2.33 3.56 ± 3.28

V10 (% of volume) 4.98 ± 8.57 4.54 ± 7.58 4.18 ± 6.84 1.80 ± 3.29 1.88 ± 3.28 3.22 ± 5.19
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maximum dose errors of the PTV and each OAR. These 
histograms are presented in Fig.  4. For both scenarios, 
the mean and maximum dose errors projected by the AB 
model were, on average, around − 0.7–4% and 1.5–4.0% 
lower compared to the Mask model. The organs with a 
negative elevation in mean dose error were body, lung_C 
(contralateral lung), and heart. It can be attributed to the 
Mask model only learning the overall mean characteris-
tics and the doses of the beam trajectory were not pre-
dicted accurately.

The average dose error for all organs in the Mask model 
was 2.31 ± 1.57%, while 1.65 ± 0.69% in the AB model. 
The average error of the maximum dose for all organs 
in the Mask model was 7.08 ± 5.13%, while 4.75 ± 3.40% 

in the AB model. The lungs and heart showed the most 
significant differences in the maximum dose, with the 
AB model exhibiting prediction errors of 4.0% and 3.5% 
lower than those of the Mask model. The maximum voxel 
dose difference for the three methods, when beam encod-
ing information was added (i.e. AB model), ranged from 
1.0 to 3.0 Gy, corresponding to approximately a 2.0–6.0% 
difference relative to the prescription dose, while the 
mean dose difference ranged from 0.3 to 1.0 Gy, account-
ing for 0.7-2.0% of the prescription dose. The difference 
in target metrics ranged from 1.0 to 2.0 Gy, correspond-
ing to approximately a 2.0–4.0% difference relative to the 
prescription dose. These results significantly improve 

Fig. 4 Average absolute errors on the mean (top) and maximum doses (bottom) for the predictions (AB and Mask models) versus the clinical dose 
(DC) of all six experimental groups on the test set for relevant targets and organs. The black lines on top of the bars represent the standard deviation 
associated with each ROI. Lung_C means contralateral lung, and Lung_I means ipsilateral lung. Considering the abysmal statistical result for PTV 
on the  Dmean of the MaskO method, Mask’s is used instead
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compared to certain IMRT dose prediction studies [1, 
33].

To standardize the beam trajectory values and evalu-
ate the accuracy of the predicted dose spatial distribution 
from both the Mask and AB models, we calculated the 
DSCs for isodose volumes (% of prescription dose). The 
results are presented in Fig. 5. The AB model performed 
superior to the Mask model across all evaluation crite-
ria. Although the difference in prediction errors between 
the two models is relatively small in the high-dose region 
(around 90–100% of the prescription dose, on average), 
significant disparities are observed in the medium to 
low-dose region (up to 15–40% isodose volume), par-
ticularly in the 0–1% isodose volumes where accurate 
beam encoding information is crucial. For these specific 
regions, the Dice coefficient of the AB model is 20–40% 
higher than that of the Mask model. The predictions of 
the Mask model fail to capture the dose features along 
the beam path, resulting in a uniform and isotropic dose 
fall-off. In contrast, the AB model accurately predicts the 
dose values corresponding to different beam geometries. 
This finding demonstrates the strong performance of our 
proposed beam-encoding-based model.

In summary, our proposed method has many advan-
tages. On the one hand, introducing the beam encoding 
information makes the model′s learning process more 
efficient. On the other hand, our methods modify the 
input data for model training without altering the net-
work structure, resulting in a highly compatible model 
that can be used with various other networks.

Nonetheless, our method still has limitations. Upon 
comparing the dose maps in Fig. 3, noticeable differences 
in the dose maps of the ABO method for the beam at the 
shallow surface of the body phantom (starting point) still 
exist. These differences necessitate additional optimi-
zation and enhancement of our subsequent algorithms 
for beam encoding. Ideally, the model should be able 
to effectively learn the dose distribution by incorporat-
ing beam configuration information, even when dealing 
with heterogeneous clinical data. The authors propose 
an improvement strategy involving pairing the CT values 
from the patient’s CT image with the beam matrix. This 
convolution is followed by uniform normalization based 
on the patient’s prescribed dose. This approach show-
cases the randomness of the beam matrix values to some 
extent as they change with the CT values. The addition 
of this joint convolutional layer has the potential to opti-
mize the prediction. In the future, we intend to develop 
a reverse planning system using the current commercial 
CK TPS to investigate the potential application of our 
dose prediction approach in expedited clinical planning.

Conclusions
We employed deep CNNs to construct a model that 
learns from a database comprising CK patients treated 
with different beam configurations to predict the 3D dose 
distribution for new patients. Two models were devel-
oped and compared: the Mask model solely incorporates 
the patient’s anatomical information, whereas the second 
model, denoted as AB, incorporates anatomical structure 

Fig. 5 The left plot contains the DSCs of the isodose volumes from 0–110% of the prescription dose for Mask (three blue lines) and AB (three red 
lines) model versus clinical dose (Dc), together with their corresponding standard deviation (color wash), for the lung cancer testing set. The right 
plot contains the difference between the averaged Dice coefficient from the AB model versus the Mask model (three comparison groups are shown 
by the labels on the figure)
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and beam configuration information. The AB model 
demonstrates superior accuracy and resilience in the 
face of varying beam geometries compared to the Mask 
model. Utilizing the 3D beam matrix, which encom-
passes essential dose characteristics along the beam path 
as input, enables more comprehensive automatic plan-
ning using deep CNNs. It obviates the need to train dis-
tinct models for each beam alignment. Consequently, 
this optimization enhances the RT process concerning 
SRT techniques.
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