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Abstract 

Purpose To investigate the early predictive value of dynamic magnetic resonance imaging (MRI)-based radiomics 
for progression and prognosis in locally advanced cervical cancer (LACC) patients treated with concurrent chemora-
diotherapy (CCRT).

Methods and Materials A total of 111 LACC patients (training set: 88; test set: 23) were retrospectively enrolled. 
Dynamic MR images were acquired at baseline  (MRIpre), before brachytherapy delivery  (MRImid) and at each follow-
up visit. Clinical characteristics, 2-year progression-free survival (PFS), and 2-year overall survival (OS) were evaluated. 
The least absolute shrinkage and selection operator (LASSO) method was applied to extract features from MR images 
as well as from clinical characteristics. The support vector machine (SVM) model was trained on the training set 
and then evaluated on the test set.

Results Compared with single-sequence models, multisequence models exhibited superior performance. 
 MRImid-based radiomics models performed better in predicting the prognosis of LACC patients than the post-
treatment did. The  MRIpre-,  MRImid- and the ΔMRImid (variations in radiomics features from  MRIpre and  MRImid) -based 
radiomics models achieve AUC scores of 0.723, 0.750 and 0.759 for 2-year PFS and 0.711, 0.737 and 0.789 for 2-year OS 
in the test set. When combined with the clinical characteristics, the ΔMRImid-based predictive model also performed 
better than the other models did, with an AUC of 0.812 for progression and 0.868 for survival.

Conclusion We built machine learning models from dynamic features in longitudinal images and found 
that the ΔMRImid-based model can serve as a non-invasive indicator for the early prediction of prognosis in LACC 
patients receiving CCRT. The integrated models with clinical characteristics further enhanced the predictive 
performance.
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Introduction
Cervical cancer is the fourth most common malignant 
tumor and the fourth leading cause of cancer death 
among women worldwide [1]. According to all the lat-
est international society guidelines, concurrent plat-
inum-based chemoradiotherapy (CCRT) followed by 
intrauterine brachytherapy (BT) is the treatment of 
choice recommended for locally advanced cervical can-
cer patients (FIGO 2018 stages IB3-IVA) [2, 3]. However, 
the 5-year disease-free survival rate remains 52–68% and 
5-year overall survival rate remains 54–73% [4], with 
most deaths due to subsequent systemic failure of distant 
metastatic disease [5], whereas the 5-year local control 
has improved with the introduction of MRI-based image-
guided radiotherapy [6].

Several new strategies for combined treatment, 
including additional chemotherapy and novel agents 
such as  PD-1/PD-L1 inhibitors, are under evaluation to 
improve the prognosis of locally advanced cervical can-
cer (LACC) patients [7–9]. The OUTBACK trial, aimed 
to determine the effects on survival of adjuvant chemo-
therapy given after standard cisplatin-based chemora-
diotherapy, showing the additional chemotherapy did not 
significantly improve overall survival or progression-free 
survival in unselected LACC compared with concurrent 
chemoradiotherapy alone [8]. Similarly, the CALLA trial 
showed that durvalumab (PD-L1 inhibitor) concurrent 
with chemoradiotherapy was well tolerated in partici-
pants with LACC, while it did not significantly improve 
progression-free survival in a biomarker unselected pop-
ulation [9]. Meanwhile, as PD-L1 was recognised as a bio-
marker for response to immune checkpoint inhibitors in 
recurrent or metastatic cervical cancer during CALLA, 
the PFS benefit was evident in the PD-L1 TAP 20% or 
greater population regardless of LN involvement, which 
reminded that more biomarkers are needed to identify 
who will benefit from the the additional treatment.

In the studies mentioned above, it was noted that the 
study arms experienced an increased incidence of grade 
3 and 4 toxicities, along with treatment-related deaths. 
However, the patients who experienced severe adverse 
effects from additional systemic treatment did not realize 
corresponding improvements in prognosis.

Thus, early identification of patients with high-risk dis-
ease who are likely to benefit the most from additional 
treatment is necessary, thereby avoiding the overtreat-
ment of patients who respond well to standard-of-care 
treatments.

Clinical factors such as FIGO stage, histological type, 
and lymph node status are known to influence the prog-
nosis of LACC patients. However, their predictive value 
is limited. In recent years, significant advancements in 
radiomics hold the promise of discovering non-invasive 

biomarkers. Such advancement could enable clinicians 
to deliver personalized anticancer treatments to each 
patient [10].

We hypothesize that dynamic MRI changes before 
and after early treatments, such as external beam radio-
therapy (EBRT), may serve as predictors of survival in 
cervical cancer patients receiving concurrent chemora-
diotherapy. Currently, no radiomics study has accurately 
predicted the prognosis of these patients at such an early 
treatment stage. Our study aimed to determine the opti-
mal and earliest timing for predicting the prognosis of 
LACC patients and to develop a dynamic MRI-based 
radiomics predictive model before or early during treat-
ment. This approach has the potential to improve over-
all survival rates by enabling the early implementation of 
intensive treatments for high-risk LACC patients.

Materials and methods
Patients
This study was performed with data from anonymized 
patients who received radiotherapy treatment between 
March 2017 and December 2021. The Institutional Ethics 
Committee of Ruijin Hospital approved this retrospective 
study (Date: 20,240,628, Reference Number: 2024-192). 
The requirement for written informed consent from each 
patient was waived because of the retrospective nature of 
the study. A total of 313 LACC patients were treated with 
CCRT at Ruijin Hospital, 111 of whom were retrospec-
tively enrolled in this study (Fig. 1). The inclusion criteria 
were as follows: (1) histologically confirmed invasive car-
cinoma of the cervix; (2) FIGO 2018 stage IB3–IVA; and 
(3) treated with CCRT at Ruijin hospital. The exclusion 
criteria were as follows: (1) received neoadjuvant chemo-
therapy prior to CCRT; (2) underwent surgery following 

Fig. 1 Flowchart of patients included and excluded from this study
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CCRT; and (3) lacked T1C or DWI sequences before 
CCRT or between EBRT and brachytherapy.

All patients underwent pelvic enhanced MRI, includ-
ing T1C and DWI at baseline  (MRIpre), and before 
brachytherapy was delivered  (MRImid). The  MRImid 
was performed after EBRT but before brachytherapy in 
our clinical practice, allowing for precise radiation dose 
optimization.

Clinical characteristics such as age; maximum tumor 
diameter (MTD); lymph node metastasis; and involve-
ment of the vagina, rectum, uterine corpus or bladder at 
diagnosis were recorded at baseline. The follow-up was 
conducted every 3  months during the first 2  years after 
treatment, every half-year for 3–5 years, and once a year 
thereafter. Patients were required to undergo MRI imag-
ing during their routine follow-up. In this study, “MRI-
post” referred to the MR images acquired 6 months after 
treatment. We observed the outcomes of the patients 
in the study via 2-year progression-free survival (PFS), 
which was defined as the period from the completion 
of CCRT to the first instance of locoregional recurrence 
or distant metastasis, and 2-year overall survival (OS), 
which was defined as the period from the completion of 
CCRT to death. LASSO regression was used to select the 
clinical factors associated with 2-year PFS and 2-year OS.

Image acquisition and segmentation strategy
All patients underwent pelvic MRI, which included both 
T1C and DWI with b values ranging from 700 to 1500 s/
mm2. The patients were imaged on a 1.5-T MR sys-
tem at Ruijin hospital in DICOM format and converted 
into NIFTI format for subsequent analyses. MRI acqui-
sitions were performed on a clinical 1.5  T MRI scan-
ner (Siemens MAGNETOM Area 1.5  T MRI scanner). 
The main imaging parameters were as follows: (1) Axial 
T2WI: TR 4000 ms, TE 78 ms, number of slices 25, slice 
thickness 5 mm, FOV 250 mm × 250 mm, some were fat 
suppression sequences; (2) Axial DWI: TR 5300 ms, TE 
74  ms, number of slices 26, slice thickness 5  mm, FOV 
380  mm × 380  mm. with b values ranging from 700 to 
1500  s/mm2; (3) Axial DCE: TR 4.57  ms, TE 1.72  ms, 
slice thickness 4 mm, FOV 300 mm × 300 mm. Gd-DTPA 
was used as contrast agent at a dose of 20 mL and a flow 
rate of 2  mL/s. Arterial phase, venous phase and equi-
librium phase images are obtained at 20–50 s, 1–2 min, 
and 2–3 min respectively. Then delayed axial images were 
acquired.

Regions of interest (ROIs) were manually delineated 
on each slice obtained from the T1C and DWI images 
by the same radiation oncologist to ensure reproducibil-
ity; then, the ROIs were validated by a senior radiation 
oncologist with at least 10 years of experience to ensure 
the accuracy of the tumor segmentation. The ROIs were 

drawn along the margin of the tumor on each slice of the 
axial contrast-enhanced MRI and DWI images. Areas of 
degeneration, hemorrhage, necrosis and exudation were 
included in ROI. The delineation and subsequent analy-
ses were performed via the open-access software ITK-
SNAP 3.8 (www. itksn ap. org). A segmentation example is 
shown in Fig. 2.

Workflow of prognosis modelling
The radiomics workflow included six steps, as illustrated 
in Fig. 3. In this study, we included data from 111 cervical 
cancer patients, each with pre-treatment and mid-treat-
ment DWI and T1C sequence MR images. The data were 
randomly divided at a ratio of 8:2, with 88 cases allocated 
to the training set and 23 to the test set. The ROI for fea-
ture extraction was manually outlined by radiation oncol-
ogists based on the GTV of the patients. For each set of 
patient data, we separately extracted 842 radiomics fea-
tures and computed feature changes by subtracting the 
pre-treatment features from the mid-treatment features. 
These feature changes were then utilized as inputs, and 
the optimal feature set for classification prediction tasks 
was selected via LASSO regression. On the basis of the 
chosen optimal features, we conducted separate machine 
learning models on the DWI and T1-enhanced sequences 
via fivefold cross-validation. The output results of the two 
models were subsequently weighted and integrated to 
produce the final classification outcome. In this study, we 
assessed the predictive performance of SVM models and 
evaluated the classification performance of the models 
via ROC curves and area under the curve (AUC) values 
during the model testing phase.

Radiomics feature extraction
Radiomics features were automatically derived using 
the PyRadiomics open-source Python library. These fea-
tures were computed from regions of interest (ROIs) on 
DWI and T1C sequence MR images representing pre-
treatment and mid-treatment data, respectively. We 
calculated the feature changes by subtracting the mid-
treatment features from the pre-treatment features for 
both the DWI and T1C data, thus obtaining the feature 
changes as inputs for the model. The computed features 
included first-order statistics, 3D morphology-based 
features, and texture analysis features such as Gray 
Level Cooccurence Matrix (GLCM), Gray Level Run 
Length Matrix (GLRLM), Gray Level Size Zone Matrix 
(GLSZM), Gray Level Dependence Matrix (GLDM), and 
Neighboring Gray Tone Difference Matrix (HGTDM). 
These features were extracted from both original images 
and images processed with wavelet filtration, employ-
ing both low-pass (L) and high-pass (H) wavelet filters. 
In our study, radiomics features were extracted in 3D, 

http://www.itksnap.org
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Fig. 2 The segmentation example using MR images in one patient. Pre-treatment  MRIpre T1C sequence (A) and DWI sequence (B), mid-treatment 
 MRImid T1C sequence (C) and DWI sequence (D)

Fig. 3 Radiomics workflow for predicting the prognosis of patients with cervical cancer treated with CCRT 
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resulting in wavelet features computed across the x-, y-, 
and z-axes. The features were classified into eight distinct 
groups based on wavelet filtration patterns: wavelet-HLL, 
wavelet-LHL, wavelet-LHH, wavelet-LLH, wavelet-HLH, 
wavelet-HHH, wavelet-HHL, and wavelet-LLL.

Feature selection
To select the best features for prediction, we employed 
the variance threshold selection and least absolute 
shrinkage and selection operator (LASSO) logistic 
regression analysis, utilizing the open-source Python 
library Scikit-learn. During the feature selection phase, 
we initially filtered out features with a variance greater 
than 1 from a pool of 842 input features. Subsequently, 
these features were fed into LASSO regression for further 
refinement, resulting in the selection of the top 10–20 
features most optimal for the prediction task. We used 
a fivefold cross-validation method for feature selection, 
which means that we input 80% of the training data’s fea-
tures into LASSO regression for selection every time and 
repeated this process five times to complete one fivefold 
validation selection. We repeated this process 100 times 
and recorded the 20 features that appeared most fre-
quently as the final selected results.

Model construction and evaluation
In this research, we employed SVM as machine learn-
ing models to model and predict the selected features, 
all of which are based on the open-source Python library 
Scikit-learn. The features used to construct the clas-
sification model were not only the features of the DWI 

and T1C sequences but also their changes from pre-
treatment to mid-treatment. The optimal 10–20 features 
are selected through LASSO regression. For different 
MR image sequences, we modeled and predicted the 
DWI and T1C sequences separately and then performed 
weighted integration in the model output stage to obtain 
the final predicted classification results. We used a five-
fold cross-validation method to optimize the parameters 
on the training set and then conducted model prediction 
performance tests on the pre-reserved test set. The pre-
dictive performance of the model was subsequently eval-
uated via the AUC of the receiver operating characteristic 
(ROC) curve.

Feature fusion
The machine learning models described above are built 
and trained using radiomics features extracted from DWI 
and T1C images in conjunction with clinical features. 
After individually modeling features from each imag-
ing modality, the machine learning process integrated 
predictions through backend processing. This integra-
tion involved weighting and aggregating probabilities to 
derive a consolidated output value. Following this, clas-
sification occurred via weighted thresholds to determine 
the final decision based on the amalgamated classifica-
tion outcomes. Importantly, the current fusion process 
was applicable solely to models employing the same 
machine learning algorithm; different machine learning 
models could not be combined. Ultimately, we evaluated 
the performance of models utilizing DWI features alone, 
T1C features alone, and a fused model that integrates 

Fig. 4 The process of integrating radiomics features and clinical characteristics. Radiomics features and clinical characteristics were each processed 
through independent feature selection and machine learning modeling workflows to yield output probability values. These values were then 
multiplied by their respective weights and summed to obtain the fused probability value. Finally, the classification result was determined based 
on a predefined threshold
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DWI, T1C, and clinical features. The process of integrat-
ing radiomics features and clinical characteristics is illus-
trated in Fig. 4.

Results
Clinical characteristics
All patients underwent MRI, including T1C and DWI 
before and during CCRT at our institution. The median 
follow-up duration was 3.2  years (interquartile range 
[IQR] 2.2–4.6  years). The median age was 56  years 
(range 28–84 years), and the median MTD was 4.56 cm 
([IQR] 3.95–5.20 cm). The baseline characteristics of the 

patients and the whole cohort are listed in Table 1. There 
were no statistical difference between training set and 
test set for each clinical characteristics.

All patients enrolled in this study received EBRT fol-
lowed by brachytherapy. EBRT was delivered to the 
whole pelvis with photon beams at a daily dose of 1.8–
2.0 Gy. Ninety-one of the 111 patients received concur-
rent weekly cisplatin-containing chemotherapy during 
EBRT.

After 2 years of follow-up, disease progression, includ-
ing local/regional recurrences and distant metastases, 
occurred in 29 of the 111 patients (26.1%), whereas death 

Table 1 The baseline clinical characteristics of patients enrolled in the study

Characteristics Patients (n = 111) Training set (n = 88) Test set (n = 23) P value

Age, years, median (range) 56 (28–84) 56 (28–84) 55(31–75) 0.603

Maximum tumor diameter (MTD), cm, 
median (IQR)

4.56 (3.95–5.2) 4.70(3.90–5.20) 4.30(4.00–5.08) 0.468

Histology (%) 0.600

  Squamous cell carcinoma 106 (95.5) 85(96.6) 21(91.3)

  Others 5 (4.5) 3(3.4) 2(8.7)

FIGO 2018 stage (%) 0.120

 IIA 5 (4.5) 5(5.7) 0(0.0)

 IIB 34 (30.6) 26(29.5) 8(34.8)

 IIIA 11 (9.9) 7(8.0) 4(17.4)

 IIIB 6 (5.4) 3(3.4) 3(13.0)

 IIIC1 32 (28.8) 25(28.4) 7(30.4)

 IIIC2 17 (15.3) 16(18.2) 1(4.3)

 IVA 6 (5.4) 69(6.8) 0(0.0)

Rectal involvement (%) 1.00

 No 99 (89.2) 78(88.6) 21(91.3)

 Yes 12 (10.8) 10(11.4) 2(8.7)

Bladder involvement (%) 1.00

 No 95 (85.6) 75(85.2) 20(87)

 Yes 16 (14.4) 13(14.8) 3(13.0)

Vagina involvement (%) 0.238

 No 12 (10.8) 11(12.5) 1(4.3)

 Yes 99 (89.2) 77(87.5) 22(95.7)

 Upper 1/3 59 (53.2) 44(50.0) 15(65.2)

 Upper 2/3 16 (14.4) 15(17.0) 1(4.3)

 Lower 1/3 24 (21.6) 18(20.5) 6(26.1)

Uterine corpus infiltration (%) 0.918

 No 71 (64.0) 57(64.8) 14(60.9)

 Yes 40 (36.0) 31(35.2) 9(39.1)

Parametrial invasion (%) 1.00

 No 26 (23.4) 21(23.9) 5(21.7)

 Yes 85 (76.6) 67(76.1) 18(78.3)

Lymph node metastasis (%) 0.374

 No 56 (50.5) 42(47.7) 14(60.9)

 Yes 55 (49.5) 46(52.3) 9(39.1)
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was reported in 19 of the 111 patients (17.1%). Therefore, 
the 2-year PFS was 73.9%, and the 2-year OS was 82.9% 
in our study.

Radiomics models for different prediction timing:  MRImid 
versus  MRIpost
Initially, radiomics models were constructed based 
on 93 patients with  MRIpre,  MRImid and  MRIpost data, 
as shown in Fig. 1. For both 2-year PFS and 2-year OS, 
multi-sequence models achieved higher AUC scores 
than single-sequence models did. For 2-year PFS pre-
diction, models based on  MRImid performed better than 
models based on  MRIpost (AUC score, 0.714[95%CI 
0.590, 0.839] vs 0.629[95%CI 0.489, 0.768]), meanwhile 
the models based on dynamic changes from  MRIpre to 
 MRImid (ΔMRImid) performed better than those based 
on dynamic changes from  MRIpre to  MRIpost (ΔMRIpost) 
(AUC score, 0.743[95%CI 0.624, 0.861] vs 0.686[95%CI 
0.555, 0.816]). For the 2-year OS prediction model, 
the AUC score was also greater for the  MRImid-based 
model than for the  MRIpost-based model (AUC score, 
0.688[95%CI 0.535, 0.840] vs 0.667[95%CI 0.510, 0.824]) 
and for the ΔMRImid-based model than for the ΔMRIpost-
based model (AUC score, 0.771[95%CI 0.642, 0.899] vs. 
0.729[95%CI 0.588, 0.870]). The ROC curves for these 
models are shown in Fig.  5. The above results indicate 
that, compared with post-treatment timing, radiomics 

models based on early treatment timing perform better 
in terms of the prognosis of patients with LACC.

Performance of combining models for PFS and OS 
prediction
To improve the performance of the prediction models, 
the initial 111 patients were enrolled in the following 
analysis. A total of 842 radiomics features were extracted 
from both original and wavelet-filtered images. The 
optimal features for classification prediction tasks were 
selected via LASSO regression, as shown in Fig.  6. The 
details of features were shown in Supplementary Table 2 
and Supplementary Table 3.

Similar results revealed that, compared with single-
sequence models, multisequence models exhibited 
superior performance, achieving higher AUC scores on 
the test set. Models built with radiomic features from 
 MRIpre,  MRImid and ΔMRImid achieved AUC scores of 
0.723[95%CI 0.615, 0.831], 0.750[95%CI 0.647, 0.853] 
and 0.759[95%CI 0.658, 0.860] for 2-year PFS and 
0.711[95%CI 0.583, 0.838], 0.737[95%CI 0.615, 0.858] and 
0.789[95%CI 0.682, 0.896], respectively, for 2-year OS in 
the test set (Fig. 7).

Among the clinical characteristics, the influencing 
factors selected by LASSO regression for 2-year PFS 
in LACC patients were MTD, lymph node metastasis, 

Fig. 5 ROC curves of models for the prognosis prediction of 2-year PFS and 2-year OS. ROC curves of models for the prognosis prediction 
of 2-year PFS (A–D): A  MRImid-based models, B  MRIpost-based models, C ΔMRImid (dynamic changes from  MRIpre to  MRImid) based models, and D 
ΔMRIpost- (dynamic changes from  MRIpre- to  MRIpost)-based models. ROC curves of models for the prognosis prediction of 2-year OS (E ~ H): E 
 MRImid-based model, F  MRIpost-based model, G ΔMRImid (dynamic changes from  MRIpre- to  MRImid)-based model, and H ΔMRIpost–based model
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vaginal and rectal involvement, age, and uterine corpus 
infiltration at diagnosis, and those for 2-year OS were 
MTD, lymph node metastasis, vaginal and rectal involve-
ment, and bladder infiltration at diagnosis. The univari-
ate analysis of clinical characteristics for progression-free 
survival and overall survival were shown in Supplemen-
tary Table 1.

When combined with these clinical characteristics 
above, the predictive model usingΔMRImid features 
achieved a higher AUC score than  MRIpre or  MRImid 
model did, with an AUC of 0.812[95%CI 0.724, 0.901] for 
2-year PFS and 0.868[95%CI 0.788, 0.948] for 2-year OS. 
Accuracy, specificity and recall of the combined models 
were 0.826, 0.875, 0.714 for 2-year PFS and 0.739, 0.737, 
0.750 for 2-year OS. A comparison of the ROC curves for 
the different models is illustrated in Fig. 7.

Prediction scores for patient risk stratification
Figure 8 illustrates the composite prediction scores of our 
models for each patient in the training set and test set. 
The score of each patient is derived from the weighted 
fusion of imaging and clinical features via DWI and 
T1C images. Using the training set outcomes, we iden-
tify the optimal cut-off value for classification perfor-
mance, which we then apply to categorize the test set 
outcomes. Based on the cut-off values for PFS (−0.032) 
and OS (0.053), patients can be categorized into high-risk 
and low-risk groups, respectively. For instance, locore-
gional recurrence and distant metastases are more likely 
to occur in patients in the high-risk group with the score 
value higher than the PFS cut-off value. The Kaplan‒
Meier curves are shown in Fig. 9.

Fig. 6 Radiomics features selected by LASSO regression. A radiomics features extracted from the T1C sequence for 2-year PFS prediction; 
C radiomics features extracted from the DWI sequence for 2-year PFS prediction; B radiomics features extracted from the T1C sequence for 2-year 
OS prediction; D radiomics features extracted from the DWI sequence for 2-year OS prediction
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Discussion
Our study demonstrated the feasibility of advancing the 
timing for predicting the prognosis of LACC patients 
from 6 months post-treatment to during treatment. This 
may provide a basis for appropriately adjusting the dose 
and fraction of subsequent brachytherapy, as well as for 
deciding whether to administer more intensive systemic 
treatments such as chemotherapy and immunotherapy. 
Additionally, we proposed predicting the prognosis of 
LACC patients by analyzing dynamic changes in radi-
omics features before and during treatment to achieve 
higher predictive performance.

Radiomics analysis has become a non-invasive method 
that visualizes and quantifies intratumoral heterogeneity 
by extracting high-throughput quantitative features from 
medical images, providing valuable prognostic infor-
mation for medical decision-making. In recent years, 
researchers have used radiomics to predict response to 
neoadjuvant chemotherapy, efficacy, and outcomes such 
as PFS and OS in patients with locally advanced cervical 
cancer, primarily via MRI and PET-CT [11, 12]. Owing to 
its excellent soft tissue contrast and multiplanar capabil-
ity, pelvic MRI is the most common imaging modality for 
evaluating locoregional tumor extent in cervical cancer 
patients [13] and was therefore applied in this study.

In previous studies, radiomics models that predicted 
the prognosis of LACC based on pre-treatment MRI 
consistently demonstrated excellent predictive perfor-
mance [14–19]. These findings suggest that MR images 
contain information correlated with patient prognosis 
before treatment. For example, Zhang et al. successfully 
constructed radiomics models from pre-treatment MR 
images of 185 LACC patients, achieving C-index values 
of 0.762 for PFS and 0.750 for OS. The pre-treatment 
models in their study also exhibited excellent predictive 
performance, with AUC scores of 0.723 for PFS and 0.711 
for OS in testing [14]. Most studies have shown that, 
compared with the use of radiomic models or clinical 
models alone, combining radiomics with clinical char-
acteristics improves model performance [12, 20]. There-
fore, we improved the predictive efficacy of our models 
by incorporating clinical characteristics, yielding results 
consistent with those of other studies (AUC scores of 
0.812 for PFS and 0.868 for OS for testing).

The EMBRACE I study indicated that patients who 
did not achieve CR at 6–9  months had significantly 
worse outcome [21]. These findings suggest that imaging 
information at 6–9  months after treatment is sufficient 
to predict the prognosis of patients with LACC. In our 
study, the  MRImid-based model demonstrated superior 

Fig. 7 Performance comparison of 2-year PFS and 2-year OS prediction models. 2-year PFS prediction models (A–D) A pre-treatment features 
B mid-treatment features C feature changes from pre-treatment to mid-treatment; D: radiomics feature changes + clinical features; 2-year OS 
prediction models (E–H) E pre-treatment features; F mid-treatment features; G feature changes from pre-treatment to mid-treatment; H radiomics 
feature changes + clinical features
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Fig. 8 Prediction outcomes of 2-year OS and 2-year PFS combined models. A training set for 2-year OS prediction; B test set for 2-year OS 
prediction; C training set for 2-year PFS prediction; D test set for 2-year PFS prediction

Fig. 9 Kaplan–Meier curves of the combined models for OS prediction (A) and PFS prediction (B)
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predictive efficacy compared with the  MRIpost model 
at 6  months after treatment. This finding indicates that 
it is unnecessary for patients to wait until the 6-month 
follow-up to predict future outcomes, enabling earlier 
adjustments to treatment intensity.

Solomon et al. reported that the response to neoadju-
vant chemotherapy is associated with the prognosis of 
patients with esophageal cancer [22]. Similarly, Li et  al. 
and Kong et  al. confirmed that early clinical response 
to neoadjuvant chemotherapy in patients with cervical 
cancer can predict long-term survival [23, 24]. Current 
published research lacks a prognosis prediction model 
based on dynamic changes in MR images. This study pro-
poses that a predictive model based on dynamic changes 
has advantages over one based on a single time point. 
The results of this study confirm this hypothesis, show-
ing that radiomics models based on dynamic changes in 
MR data during early CCRT can predict the prognosis 
of LACC patients and even achieve better performance 
than models based solely on pre-CCRT MR images.

Although our radiomics-clinical models yielded sat-
isfactory results, there are several limitations. First, our 
sample size is relatively small compared with that of 
other studies, and we did not utilize external valida-
tion cohorts, which may impact the generalizability of 
the model to real-world outcomes. In future research, 
we aim to optimize the predictive performance of the 
model and expand its application by leveraging larger 
patient cohorts from multiple centers. Second, this study 
employed a retrospective approach because of the need 
for a long follow-up time to assess PFS and OS, so the 
results require validation through prospective studies. 
Additionally, variability in patient image sequences led 
to the lack of MRI T2 sequences in this study. Although 
the radiomics models in this study exhibited comparable 
prognostic prediction performance to previously pub-
lished models based on T2 sequences or their combina-
tions [17, 18], the incorporation of T2 sequences in the 
future may enhance prognostic prediction performance 
and necessitate support from larger-scale studies.

In conclusion, the time point between EBRT and BT 
during treatment can serve as a non-invasive indicator 
for early prediction of prognosis in patients with LACC 
receiving CCRT. Additionally, the dynamic change in 
radiomics features before and after treatment offers bet-
ter predictive performance. The findings of this study 
offer novel insights into predicting the prognosis of 
patients with LACC. By identifying high-risk patients 
early, intervention treatments can be administered 
promptly, potentially improving treatment outcomes. 
Moreover, patients with relatively better prognoses can 
avoid the toxicity of additional treatments. This approach 
holds promise for optimizing patient care in the future.
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