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Abstract
Background  Several studies have suggested that lung tissue heterogeneity is associated with overall survival (OS) in 
lung cancer. However, the quantitative relationship between the two remains unknown. The purpose of this study is 
to investigate the prognostic value of whole lung-based and tumor-based radiomics for OS in LA-NSCLC treated with 
definitive radiotherapy.

Methods  A total of 661 patients with LA-NSCLC treated with definitive radiotherapy in combination with 
chemotherapy were enrolled in this study, with 292 patients in the training set, 57 patients from the same hospital 
from January to December 2017 as an independent test set (test-set-1), 83 patients from a multi-institutional 
prospective clinical trial data set (RTOG0617) as test-set-2, and 229 patients from a Dutch radiotherapy center as test-
set-3. Tumor-based radiomic features and whole lung-based radiomic features were extracted from primary tumor 
and whole lungs (excluding the primary tumor) delineations in planning CT images. Feature selection of radiomic 
features was done by the least absolute shrinkage (LASSO) method embedded with a Cox proportional hazards (CPH) 
model with 5-fold cross-internal validation, with 1000 bootstrap samples. Radiomics prognostic scores (RS) were 
calculated by CPH regression based on selected features. Three models based on a tumor RS, and a lung RS separately 
and their combinations were constructed. The Harrell concordance index (C-index) and calibration curves were used 
to evaluate the discrimination and calibration performance. Patients were stratified into high and low risk groups 
based on median RS, and a log-rank test was performed.

Results  The discrimination ability of lung- and tumor-based radiomics model was similar in terms of C-index, 0.69 vs. 
0.68 in training set, 0.68 vs. 0.66 in test-set-1, 0.61 vs. 0.62 in test-set-2, 0.65 vs. 0.64 in test-set-3. The combination of 
tumor- and lung-based radiomics model performed best, with C-index of 0.71 in training set, 0.70 in test-set-1, 0.69 in 
test-set-2, and 0.68 in test-set-3. The calibration curve showed good agreement between predicted values and actual 
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Introduction
Identification of biomarkers to predict treatment out-
comes is essential to achieve personalized treatment. Sev-
eral studies have demonstrated that radiomics extracted 
from LA-NSCLC (locally advanced non–small-cell lung 
cancer) can predict prognosis, such as locoregional fail-
ure [1], distant metastasis [2], progression-free survival 
[3] and overall survival (OS) [4]. Throughout these stud-
ies reported in literature, the predictors/models were 
built based exclusively on tumor features. However, prog-
nosis of NSCLC might not only depend on the tumor but 
also on the tumor micro-environment and on the host, 
and thus the interplay between these factors may have a 
significant role in treatment and prognosis [5–8]. Differ-
ent cells derived from different organs and tissues may 
contribute to the heterogeneity of the tumor environ-
ment, which is thus related to prognosis of NSCLC [9]. 
In clinical studies, survival of NSCLC patients are asso-
ciated with both intrinsic tumor aggressiveness and the 
environment into which the tumor grows [10]. Several 
studies have found that coexisting chronic obstructive 
pulmonary diseases (COPD) was associated with worse 
survival in patients with NSCLC [11–14] and coexistence 
of interstitial lung disease and NSCLC was also indepen-
dent risk factors for shorter survival of NSCLC [15–18]. 
These studies suggest that the heterogeneity of lung tis-
sue is associated with OS of NSCLC. Shuo W et al. [19] 
established a fully automated artificial intelligence sys-
tem to mine whole-lung information from CT images to 
predict EGFR genotype and prognosis with EGFR-TKI 
treatment, and its performance was overall better than 
tumor-only based deep learning methods. This study 
demonstrated the potential of artificial intelligence to 
decode the lung tissue phenotype. Based on these stud-
ies, we hypothesized that whole-lung radiomic features 
may be correlated with OS of LA-NSCLC.

In this study, we extracted radiomic features of tumor 
and lung regions from the planning CT images of LA-
NSCLC patients treated with definitive radiotherapy 
in combination with chemotherapy and developed OS 
prediction models. The predictive value based on tumor 
and lung tissue alone as well as the combination of both 
was investigated. Three independent validation sets with 
a large heterogeneity of patient were used to validate 
the performance of the proposed models. In addition, 
patients were stratified into different risk groups based 

on the radiomic score to assess the performance of the 
models.

Methods
Patients and data sets
This retrospective observational study is a Transparent 
Reporting of a multivariate prediction model for Indi-
vidual Prognosis Or Diagnosis (TRIPOD) type 3 inves-
tigation. This study was approved by our institution 
Ethics Committee (IRB/bc2021135) and confirmation of 
informed consent by patients was waived. The workflow 
of the study is shown in Fig.  1. We retrieved 349 LA-
NSCLC patients who underwent definitive radiotherapy 
in combination with chemotherapy from January 2015 
to June 2020 in Tianjin Medical University Cancer Insti-
tute and Hospital, in which patients from January 2015 
to December 2016 and January 2018 to June 2020 served 
as training set (292 patients) and patients from January 
to December 2017 formed the independent test-set-1 (57 
patients). More details on the criteria of inclusion and 
exclusion are given in Supplementary Materials A.

In addition, a multi-institutional prospective RTOG 
clinical trial dataset (RTOG0617 [20, 21]) (test-set-2) and 
a data set from a Dutch radiotherapy center - MAASTRO 
(test-set-3) [20, 22, 23] were used as external validation. 
They comprised of 83 patients and 229 patients, respec-
tively. The patient (in external test sets) inclusion criteria 
is provided in Supplementary Fig. S1.

The endpoint of the study was OS, which is defined as 
the time from the date of the final radiotherapy fraction 
until death for any cause or lost follow-up (right censor).

CT acquisition and ROI segmentation
All planning CT scans were acquired on a Brilliant 
(Philips Medical Systems; Best, The Netherlands) scan-
ner in the training set and test-set-1. The scan param-
eters were set as follows: slice thickness 2–5  mm, tube 
voltage 120  kV, tube current 100 mAs, 512 × 512 pixels, 
vendor’s default convolution kernel was used for recon-
struction. To reduce the influence of slice thickness on 
feature extraction, all planning CT images were isoto-
pically resampled as 1  mm cubes with linear interpola-
tion before segmentation of regions of interest (ROIs). 
Two ROIs (primary tumor and whole lung excluding 
primary tumor) were segmented. Before radiotherapy, a 
junior physician manually delineated the primary tumor 

values. Patients were well stratified in training set, test-set-1 and test-set-3. In test-set-2, it was only whole lung-based 
RS that could stratify patients well and tumor-based RS performed bad.

Conclusion  Lung- and tumor-based radiomic features have the power to predict OS in LA-NSCLC. The combination 
of tumor- and lung-based radiomic features can achieve optimal performance.
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and a senior radiation oncologist modified and reviewed 
this segmentation in the Pinnacle TPS (Philips Radia-
tion Oncology Systems; Fitchburg, Wisconsin, United 
States), with image fusion against complementary imag-
ing studies when possible (such as positron emission 
tomography). For the segmentation of lungs, in order 
to improve the efficiency and consistency of segmenta-
tion, a retrained deep-learning automatic contour model 
was used for lung segmentation based on a published 
model [24]. Then manual editing was performed by a 
radiation oncologists (author M.Y.), and the other expe-
rienced radiation oncologists (author Z.Z) independently 
reviewed the lung segmentations using 3D slicer software 
[25]. More details of the segmentation are available at 
Supplementary Material B.

Radiomic features extraction and feature selection
In total 824 radiomic features were extracted based 
on Pyradiomics v3.7, covering 17 intensity histogram 

features, 14 shape features, 73 textural features and 
711 wavelet radiomic features. More details about the 
radiomic features extraction are described in previous 
publications [26, 27]. The feature extraction parameters 
are given in Supplementary Materials C. As shown in the 
Fig. 1, two steps were adopted for selection of radiomic 
features. First, pair-wise feature correlation reduction; 
we used the R caret library to recursively reduce the total 
number of pair-wise Pearson correlation between any 
two features with Spearman correlation in excess of 0.9. 
Then the radiomic features were screened using least 
absolute shrinkage (LASSO) embedded with COX pro-
portional hazards model (COX) with 5-fold cross-inter-
nal validation by the R glmnet package, with 1000 unique 
bootstrap samples from the whole training set. From each 
of the 1000 bootstraps, we ranked each individual feature 
according to how frequently the feature was retained by 
the LASSO-COX. Then, we selected a cut-off frequency 
for the top most frequently appearing individual features 

Fig. 1  Workflow of the project. ROI segmentation: tumor region and whole-lung region segmented; Feature selection: 1000 unique bootstrap samples 
taken from all samples, features selected by correlation, least absolute shrinkage embedded with Cox proportional hazards model and Akaike informa-
tion criterion for modeling; Model construction: tumor radiomics signature and lung radiomics signature for model construction; Model performance: 
model performance evaluated using discrimination, calibration and Kaplan-Meier analysis. Abbreviations: ROI: region of interest; Lasso-Cox: least absolute 
shrinkage embedded with Cox proportional hazards model; AIC: Akaike information criterion; T-RM: Cox proportional hazards model based on tumor 
signature; L-RM: Cox proportional hazards model based on lung signature; TL-RM: Cox proportional hazards model based on tumor signature and lung 
signature; C-index: Harrell concordance index
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from the ranking table. Secondly, the radiomic features 
selected over the cut-off point were imported into the 
“feature pool” for further selection based on COX and 
stepwise backward Akaike information criterion (AIC) 
for the same 1000 bootstrap samples as in step 1.

Finally, the radiomic feature combination (signature) 
that ranked first in frequency was selected for model 
building. Prior to modeling, radiomic features were 
normalized by the Z-score. The same feature selection 
approach was used for tumor- and lung-based radiomics 
signatures.

Construction of the models
The tumor radiomic signature-based COX regression 
model (T-RM) was developed and the tumor radiomic 
prognostic score (T-RPS) was calculated. The same 
approach was performed for the COX regression model 
based on lung signature (L-RM) and lung radiomics 
prognostic score (L-RPS). A combined tumor and lung-
based model (TL-RM) was constructed using T-RPS and 
L-RPS as covariates. The prognostic score (TL-RPS) was 
calculated using a Cox regression model, with weights 
for the covariates determined by the model’s coefficients 
estimated during the fitting process.

Statistical analysis
All statistical analyses were executed in R software 
(V4.4.3, https://www.R-project.org/) and SPSS27. 
Patients’ baseline differences between training set and 
testing sets were analyzed by exact Fisher test for cate-
gorical variables, A two-side hypothesis test was applied, 
and a p-value less than 0.05 was considered statistically 
significant.

The Harrell concordance index (C-index) was used for 
evaluating the discrimination of models. Goodness of fit 
(the degree of concordance between the predicted and 
observed values) was assessed by Calibration Curve for 2 
years (730days) with 1000 bootstrap resamples using the 
R rms package.

Based on the prognostic score, the fixed cut-off points, 
the median scores of training set in three prognostic 
scores (T-RPS, L-RPS, TL-RPS), were used in the test 
sets. The different risk groups were stratified by cut-off 
points. The Kaplan-Meier (K-M) method was used to 
calculate survival rates, and log-rank test was applied 
to compare survival distribution between different risk 
groups.

Results
Patient characteristics
Patients baseline characteristics are reported in Table  1 
and a comparative analysis was conducted on the baseline 
characteristics among the three data sets. The median 
age of the training set, test-set-1 and test-set-2 was 61.5 

years (range from 21 to 88 years), 53 years (range from 
44 to 75 years) and 65 years (range from 39 to 82 years), 
respectively. In the whole cohort, a total of 433 patients 
reached the endpoint. Median follow-up time was 23.4 
months (range of 1.4–85.8months). More details are 
listed in Supplementary Table S1.

Radiomic feature selection and construction of models
After feature selection, a tumor-based radiomics sig-
nature including 11 radiomic features and a lung-based 
radiomics signature including 8 radiomic features were 
constructed. More details and graphs of radiomic fea-
tures selection together with the selected features for 
model building are provided in Supplementary Materials 
D.

The T-RPS and the L-RPS were calculated based on 
the coefficients weighted by COX. Similarly, TL-RPS 
were also calculated. The formulae for the construction 
of T-RPS, L-RPS, TL-RPS are provided in Supplemen-
tary Materials E. In the integrated model (TL-RM), the 
weights of the T-RPS, L-RPS was 0.801897 and 0.81187, 
respectively.

Performance of the models
The discrimination results are shown in Table  2. The 
integrated model TL-RM, which combined T-RPS and 
L-RPS, showed the best prediction power. The results 
of the tumor-based model (T-RM) and the lung-based 
model (L-RM) are similar (C-index 0.68 vs. 0.69 in the 
training set, 0.66 vs. 0.68 in the test-set-1, 0.62 vs. 0.61 in 
the test-set-2, 0.64 vs. 0.65 in the test-set-3). The calibra-
tion curve of 2 years OS with 1000 bootstrap resampling 
in training set is displayed in Supplementary Fig.  S3, 
which shows good consistency between the predicted 
probabilities of 2 years OS versus the actual observed 
probabilities of 2 years OS.

The Kaplan-Meier survival curves of T-RM, L-RM and 
TL-RM are provided in Fig.  2. The fixed cut-off points 
(the median scores of the training set) for T-RM, L-RM 
and TL-RM were − 321.21, -52.96 and − 300.66, respec-
tively. The patients were divided into high-risk group and 
low-risk group based on the models. As shown in Fig. 2, 
good stratification was observed in the T-RM, L-RM and 
TL-RM in the training set (log-rank test, T-RM: p < 0.001, 
L-RM: p < 0.001, TL-RM: p < 0.001) and test-set-3 (log-
rank test, T-RM: p < 0.001, L-RM: p = 0.0015, TL-RM: 
p < 0.001). In test-set-1, T-RM (log-rank test, p = 0.042), 
L-RM (log-rank test, p = 0.035) and TL-RM (log-rank test, 
p = 0.0027) showed significant stratification. In test-set-2, 
while the differences between the high-risk and low-risk 
groups in the T-RM (log-rank test, p = 0.27) and TL-RM 
(log-rank test, p = 0.76) were not statistically significant, 
the stratification of the L-RM showed a significant differ-
ence (log-rank test, p = 0.013) (Fig. 2). When cutoff points 

https://www.R-project.org/
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were determined based on the optimal cutoffs of the 
training set, good stratification was observed in TL-RM 
(log-rank test, p = 0.012), (Supplementary Fig. S4).

As shown in Supplementary Table S4, the tumor loca-
tion, and T stage were different between the high- and 
low-risk groups that stratified by T-RM. For the different 
risk groups based on L-RM, N stage and smoking showed 
statistical significance (Supplementary Table S4).

Discussion
Identification of patients with a poor prognosis and short 
OS is a vital clinical need on the basis of which appro-
priate treatment strategies can be adopted. In this study, 
we demonstrated that both tumor-based and lung-based 
radiomic features can predict OS of LA-NSCLC patients 
receiving definitive radiotherapy. In addition, the inte-
grated model, combining tumor-based and lung-based 
radiomics signatures, can achieve an even higher predic-
tive power.

Compared to the previous study [28], we employed a 
more rigorous and transparent method to select radiomic 
features and test the whole-lung radiomics model across 
three independent datasets. We believe that our approach 
enhances the reproducibility and generalizability of 
our findings. To explore the predictive power of lung 
radiomic features, the lung radiomics model was built 
and validated in three independent test sets, and patients 
were stratified into different risk group based on L-RM. 
This study showed that the predictive power of lung-
based radiomics signature was similar to tumor-based 
radiomics signature in terms of C-index and risk group 
stratification. This may suggest to us that the predictive 
ability of latent information in the lungs is comparable to 
that of tumors. Moreover, according to the coefficients in 

Table 1  Patient characteristics
Characteristic All patients

N = 661
Training set
N = 292

Test-set = 1
N = 57

Test-set-2
N = 83

Test-set-3
N = 229

P-value

Gender < 0.001*
Male 482(72.9%) 232(79.5%) 47(82.5%) 50(60.2%) 153(66.8%)
Female 179(27.1%) 60(20.5%) 10(17.5%) 33(39.8%) 76(33.2%)
Age < 0.001*
≤ 60 257(38.9%) 135(46.2%) 41(71.9%) 27(32.5%) 54(23.6%)
>60 400(60.5%) 157(53.8%) 16(28.1%) 56(67.5%) 171(74.7%)
NA 4(0.6%) 0(0%) 0(0%) 0(0%) 4(1.7%)
Histology < 0.001*
SCC 336(50.8%) 159(54.5%) 41(71.9%) 30(36.1%) 106(46.3%)
Non-SCC 325(49.2%) 133(45.5%) 16(28.1%) 53(63.9%) 123(53.7%)
Clinical Stage < 0.001*
IIIA 269(40.7%) 95(32.5%) 19(33.3%) 41(49.4%) 114(49.8%)
IIIB 284(43.0%) 135(46.2%) 30(52.6%) 32(38.6%) 87(38.0%)
IIIC 108(16.3%) 62(21.2%) 8(14.0%) 10(12.0%) 28(12.2%)
Tumor
location

0.039*

Central 286(66.2%) 189(64.7%) 46(80.7%) 51(61.4%) ——
Peripheral 146(33.8%) 103(35.3%) 11(19.3%) 32(38.6%) ——
Smoking 0.001*
No 74(18.2%) 63(21.6%) 6(10.5%) 5(6.0%) ——
Yes 358(81.8%) 229(78.4%) 51(89.5%) 78(94.0%) ——
CCRT < 0.001*
No 236(54.6%) 194(66.4%) 42(73.7%) 0(0%) ——
Yes 196(45.4%) 98(33.6%) 15(26.3%) 83(100%) ——
Abbreviations NA = Null value; SCC = squamous cell carcinoma; CCRT = concurrent chemoradiotherapy

*The differences in characteristics were evaluated by exact Fisher test for categorical variables

Table 2  C-index of all models in different sets
Model Training set Test-set-1 Test-set-2 Test-set-3

C-index
(95%CI)

C-index
(95%CI)

C-index
(95%CI)

C-index
(95%CI)

T-RM 0.68
(0.63–0.72)

0.66
(0.60–0.73)

0.62
(0.54–0.78)

0.64
(0.59–0.68)

L-RM 0.69
(0.64–0.73)

0.68
(0.62–0.75)

0.61
(0.48–0.74)

0.65
(0.55–0.74)

TL-RM 0.71
(0.66–0.77)

0.70
(0.68–0.82)

0.69
(0.58–0.84)

0.68
(0.62–0.76)

Abbreviations T-RM: COX proportional hazards model based on tumor 
signature; L-RM: COX proportional hazards model based on lung signature; 
TL-RM: COX proportional hazards model based on tumor signature and lung 
signature
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tumor and lung signature combination model (TL-RSM), 
the importance of lung- and tumor-based radiomics sig-
nature was very close (0.81 vs. 0.80), which reminds us 
that lung radiomic features should not be neglected when 
predicting OS in LA-NSCLC.

We found that L-RM retains a good discrimination 
power across each of the training and test data sets 
(Fig. 2B). However, the stratification of T-RM and TL-R 
in test-set-2 performed poorly (Fig. 2A.2 C). This might 
be due to the fact that fewer patients were included in 
test-set-2. Also, this is a multi-institution North-Amer-
ican trial data set that might show greater heterogene-
ity in patient and data acquisition characteristics (i.e., 
patients are from different institutions). Also the lung 
cancer susceptibility genes and genomes are thought to 
exhibit variations between Chinese and Caucasian popu-
lations [29]. The training set consisted solely of Chinese 
patients, while the test-set-2 dataset included 84.3% Cau-
casian patients (Supplementary Table S1b). Even though, 
test-set-3 also consisted of almost exclusively Caucasian 
patients, it performed well perhaps because of relatively 
large sample size, while test-set-1 performed well per-
haps because of it originated from the same data sources 
of training set. In addition, although we performed pre-
processing such as resampling and normalization before 
extracting radiomic features to harmonize different data-
sets, there may still be image level differences due to 
scanning protocols, construction kernels, etc. Further in-
depth algorithms still need to be developed.

Other studies have demonstrated that pre- and post-
radiotherapy CT images of both have predictive abil-
ity for OS in LA-NSCLC [30–35]. In these studies, the 
radiomic features were derived from the primary tumor, 
while lung radiomic features may change after radio-
therapy [36]. The main objective of this study was to 
explore the corrections between lung radiomic features 
and OS, so only pre-radiotherapy CT images were used 
in this study. In dataset division, selecting patients from 
January to December 2017 as test-set-1 minimizes end-
data extreme value bias, ensures adequate follow-up, and 
prevents overfitting. Moreover, this period represents 
the IMRT to VMAT transition in the center, enhancing 
model generalization assessment.

Several steps were performed in this study to improve 
the robustness and reproducibility of the radiomic fea-
tures. First, all CT images were reconstructed to the same 
slice thickness (1 mm), and segmentation was performed 
in the reconstructed images. Secondly, in terms of seg-
mentation, manual-segmentation is considered time 
consuming, unstable and poorly repeatable [37]. In this 
study, a combination of automatic and manual segmen-
tation method was applied to segment the lungs. Lastly, 
LASSO-COX was used for the selection of the radiomic 
features, which was suitable for high-dimensional 
radiomic features to reduce the effects of overfitting in 
small-sized data, and 1000 bootstrap method was used to 
reduce the risk of over-optimistic results.

Among the features selected for the tumor radiomics 
signature, nine radiomic features were wavelet-based 

Fig. 2  Kaplan-Meier survival curves for the tumor radiomics model (A), lung radiomics model (B), and combined tumor and lung radiomics model (C) in 
the training set and three distinct test sets (test-set-1, test-set-2, and test-set-3)
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features. The wavelet filtered radiomic features play a 
key role in the tumor-based radiomic signature. Previous 
studies have found similar results [23, 38, 39], suggesting 
that wavelet-based features reflect tumor heterogeneity 
well and are closely related to OS in NSCLC. Chen [40] 
et al. established the radiomic signature for predicting OS 
of NSCLC, which included the same GLDM features we 
found in our study.

When comparing clinical characteristics between the 
high- and low- risk groups defined by the radiomics 
prognostic score, we noted that patients with centrally 
located tumors had high tumor-based prognostic scores 
and smokers had higher lung-based prognostic scores 
(Supplementary Table S4). The distribution of patho-
logical types differs between central and peripheral lung 
cancer, and radiomics may have the potential to discrimi-
nate between these distinct subtypes [41, 42]. More-
over, even within the same pathological type, variations 
in clinicopathological factors exist between central and 
peripheral lung cancer [43, 44], which may contribute to 
different prognostic scores observed in these two sub-
groups. Weeden [45] et al. found that a specific T cells 
were highly enriched in smokers and there was a different 
inflammatory environment between the lungs of smok-
ers and the lungs of non-smokers, which may explain the 
different lung-based prognostic scores between smokers 
and non-smokers. This suggests to us that radiomics may 
reflect tumor and lung conditions and thus predict OS.

Both peri-tumoral and whole-lung radiomic features 
exhibit prognostic value, reflecting distinct aspects of 
the disease. Previous studies [46–48] indicate that peri-
tumoral features are associated with prognosis, likely 
due to tumor invasiveness and local microenvironment 
changes, whereas whole-lung features may reveal sys-
temic pathological processes such as inflammation or 
interstitial lung disease. Future research should focus 
on integrating information from multiple regions to 
develop a comprehensive model, elucidating the interplay 
between local tumor characteristics and systemic lung 
pathology.

There are several limitations in the present study. 
Firstly, this study is retrospective and prospective data 
will be needed for future study to eliminate selection 
bias. Prospective studies also enable standardization of 
follow-up to ensure accuracy of endpoints. Secondly, 
most of the patients in the study were treated before the 
NCCN revised its guidelines based on the results of the 
PACIFIC trial [49], which was one of the most revolu-
tionary updates in the treatment of LA-NSCLC, where 
immunotherapy was used for patients who did not prog-
ress after radiation therapy. However, immunotherapy is 
presently unaffordable for many patients. For these rea-
sons, consolidation immunotherapy has not been rou-
tinely performed in China, which may have affected OS. 

Even in the immunotherapy era, identifying patients who 
are refractory to chemoradiotherapy is useful, for these 
patients should not be treated with this toxic combina-
tion. In the future, we need to conduct a radiomics study 
of OS prediction in patients treated with curative radio-
therapy and consolidation immunotherapy. Thirdly, more 
attention is growing on the use of multi-omics, which has 
been proven to improve the performance of models [50]. 
Through analysis of genomics, radiomics may be able to 
be represented at the biological level. In future studies, 
clinical factors, dosiomics and genomics should be inte-
grated. Fourthly, while this study has encouraging results, 
this is only a pilot study and further refinement is still 
needed to obtain better performance for clinical use.

Conclusion
A TRIPOD type 3 prediction model was developed and 
validated using external validation data. The selected 
lung radiomic signature has the power to predict OS in 
patients with LA-NSCLC treated with definitive radio-
therapy in combination with chemotherapy. The model 
combining tumor radiomic features, and lung radiomic 
features has the best predictive power and can stratify 
patients well into different risk groups.

Supplementary Information
The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​1​8​6​/​s​1​3​0​1​4​-​0​2​5​-​0​2​5​8​3​-​1​​​​​.​​

Supplementary Material 1

Acknowledgements
This manuscript was prepared using data from datasets (RTOG-0617; 
NCT00533949-D1, D2, D3) from the NCTN/NCORP Data Archive of the 
National Cancer Institute’s (NCI’s) National Clinical Trials Network (NCTN). 
Data were originally collected from a clinical trial (identifier NCT00533949; 
“A Randomized Phase III Comparison of Standard-Dose (60 Gy) Versus High-
Dose (74 Gy) Conformal Radiotherapy with Concurrent and Consolidation 
Carboplatin/Paclitaxel +/- Cetuximab (IND #103444) in Patients With Stage 
IIIA/IIIB Non-Small Cell Lung Cancer”). All analyses and conclusions in this 
manuscript are the sole responsibility of the authors and do not necessarily 
reflect the opinions or views of the clinical trial investigators, the NCTN, the 
NCORP or the NCI.

Author contributions
Meng Yan was responsible for conducting the experiments, collecting and 
organizing the data, and contributed to the writing of the initial draft.Jia Tian 
and Jiaqi Yu was responsible for collecting and organizing the data.Andre 
Dekker, Dirk de Ruysscher and Leonard wee provided the partial data for the 
experiments, participated in the design of the experiments, and assisted in 
revising the manuscript.Lujun Zhao and Zhen Zhang, as the corresponding 
author, was responsible for the conception of the entire research project, 
guided all aspects of the study, and participated in the finalization of the 
manuscript.All authors have reviewed and agreed to the final version of the 
manuscript.

Funding
This study was funded by the National Natural Science Foundation of China 
(no. 82303672) and Tianjin Key Medical Discipline (Specialty) Construction 
Project (No. TJYXZDXK-009 A).

https://doi.org/10.1186/s13014-025-02583-1
https://doi.org/10.1186/s13014-025-02583-1


Page 8 of 9Yan et al. Radiation Oncology            (2025) 20:9 

Data availability
Research data are stored in an institutional repository and will be shared upon 
request to the corresponding author.

Declarations

Ethics approval
This study was approved by Tianjin Medical University Cancer Institute & 
Hospital Ethics Committee (IRB/bc2021135). This study is a retrospective 
analysis that does not involve any organizations, direct patient contact, or the 
disclosure of patient personal privacy. The research will not provide diagnostic 
reports to patients, and the experimental results are intended solely for 
comparative purposes and will not be used as clinical evidence. The informed 
consents were waived after review and approval by the ethics committee.

Competing interests
The authors declare no competing interests.

Author details
1Department of Radiation Oncology, Key Laboratory of Cancer Prevention 
and Therapy, Tianjin Medical University Cancer Institute & Hospital, 
National Clinical Research Center for Cancer, Tianjin’s Clinical Research 
Center for Cancer, Tianjin 300060, China
2Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese 
Academy of Sciences, Hangzhou, Zhejiang 310022, China
3Department of Radiation Oncology (Maastro), GROW Research Institute 
for Oncology and Reproduction, Maastricht University Medical Centre+, 
Maastricht, The Netherlands
4Department of Radiation Oncology, National Cancer Center/National 
Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of 
Medical Sciences and Peking Union Medical College, Beijing  
100021, China

Received: 30 April 2024 / Accepted: 3 January 2025

References
1.	 Chen X, Tong X, Qiu Q, et al. Radiomics Nomogram for Predicting Locore-

gional failure in locally Advanced Non-small Cell Lung Cancer treated with 
definitive chemoradiotherapy. Acad Radiol. 2022;29(Suppl 2):S53–61. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​a​c​r​a​.​2​0​2​0​.​1​1​.​0​1​8​​​​​.​​​

2.	 Tao J, Lv R, Liang C, et al. Development and validation of a CT-Based signature 
for the prediction of distant metastasis before treatment of Non-small Cell 
Lung Cancer. Acad Radiol. 2022;29:S62–72. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​a​c​r​a​.​2​0​2​
0​.​1​2​.​0​0​7​​​​​.​​​

3.	 Zhang N, Liang R, Gensheimer MF, et al. Early response evaluation using 
primary tumor and nodal imaging features to predict progression-free 
survival of locally advanced non-small cell lung cancer. Theranostics. 
2020;10(25):11707–18. https:/​/doi.or​g/10.71​50/t​hno.50565.

4.	 Luna JM, Barsky AR, Shinohara RT, et al. Radiomic phenotypes for improving 
early prediction of Survival in Stage III Non-small Cell Lung Cancer Adenocar-
cinoma after Chemoradiation. Cancers (Basel). 2022;14(3):700. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​
/​1​0​.​3​3​9​0​/​c​a​n​c​e​r​s​1​4​0​3​0​7​0​0​​​​​.​​​

5.	 Wong KY, Cheung AHK, Chen B, et al. Cancer-associated fibroblasts in nons-
mall cell lung cancer: from molecular mechanisms to clinical implications. Int 
J Cancer. 2022;151(8):1195–215. https:/​/doi.or​g/10.10​02/i​jc.34127.

6.	 Wen Y, Guo G, Yang L, et al. A tumor microenvironment gene set-based 
prognostic signature for non-small-cell lung cancer. Front Mol Biosci. 
2022;9:849108. https:/​/doi.or​g/10.33​89/f​molb.2022.849108.

7.	 Wood SL, Pernemalm M, Crosbie PA, Whetton AD. The role of the tumor-
microenvironment in lung cancer-metastasis and its relationship to potential 
therapeutic targets. Cancer Treat Rev. 2014;40(4):558–66. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​
0​1​6​/​j​.​c​t​r​v​.​2​0​1​3​.​1​0​.​0​0​1​​​​​.​​​

8.	 Lc D. The tumor organismal environment: role in tumor development and 
cancer immunotherapy. Sem Cancer Biol. 2020;65. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​
e​m​c​a​n​c​e​r​.​2​0​1​9​.​1​2​.​0​2​1​​​​​.​​​

9.	 Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor 
microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther. 
2022;22(2):169–82. https:/​/doi.or​g/10.10​80/1​4737140.2022.2019018.

10.	 Choi N, Baumann M, Flentjie M, et al. Predictive factors in radiotherapy for 
non-small cell lung cancer: present status. Lung Cancer. 2001;31(1):43–56. 
https:/​/doi.or​g/10.10​16/s​0169-5002(00)00156-2.

11.	 Zhai R, Yu X, Shafer A, Wain JC, Christiani DC. The impact of coexisting COPD 
on survival of patients with early-stage non-small cell lung cancer undergo-
ing surgical resection. Chest. 2014;145(2):346–53. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​3​7​8​/​c​h​e​
s​t​.​1​3​-​1​1​7​6​​​​​.​​​

12.	 Lim JU, Yeo CD, Rhee CK, et al. Overall survival of driver mutation-negative 
non-small cell lung cancer patients with COPD under chemotherapy com-
pared to non-COPD non-small cell lung cancer patients. Int J Chron Obstruct 
Pulmon Dis. 2018;13:2139–46. https:/​/doi.or​g/10.21​47/C​OPD.S167372.

13.	 Wang P, Zhu M, Zhang D, et al. The relationship between chronic obstructive 
pulmonary disease and non-small cell lung cancer in the elderly. Cancer Med. 
2019;8(9):4124–34. https:/​/doi.or​g/10.10​02/c​am4.2333.

14.	 Dong W, Zhu Y, Du Y, Wang L, Feng X, Ma S. Impact of severe-to‐very severe 
chronic obstructive pulmonary disease on the prognosis of patients with 
non‐small cell lung cancer who received chemotherapy. Clin Respir J. 
2020;14(4):345–52. https:/​/doi.or​g/10.11​11/c​rj.13139.

15.	 Schussler O, Bobbio A, Dermine H, et al. Twenty-year survival of patients 
operated on for non-small-cell Lung Cancer: the impact of Tumor Stage and 
patient-related parameters. Cancers (Basel). 2022;14(4):874. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​
.​3​3​9​0​/​c​a​n​c​e​r​s​1​4​0​4​0​8​7​4​​​​​.​​​

16.	 Ueda T, Aokage K, Mimaki S, et al. Characterization of the tumor immune-
microenvironment of lung adenocarcinoma associated with usual interstitial 
pneumonia. Lung Cancer. 2018;126:162–9. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​l​u​n​g​c​a​n​.​
2​0​1​8​.​1​1​.​0​0​6​​​​​.​​​

17.	 Lee SJ, Lee J, Park YS, et al. Impact of chronic obstructive pulmonary disease 
on the mortality of patients with non-small-cell lung cancer. J Thorac Oncol. 
2014;9(6):812–7. https:/​/doi.or​g/10.10​97/J​TO.0000000000000158.

18.	 Sato T, Watanabe A, Kondo H, et al. Long-term results and predictors of sur-
vival after surgical resection of patients with lung cancer and interstitial lung 
diseases. J Thorac Cardiovasc Surg. 2015;149(1):64–9. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​
j​.​j​t​c​v​s​.​2​0​1​4​.​0​8​.​0​8​6​​​​​. 2.

19.	 Wang S, Yu H, Gan Y, et al. Mining whole-lung information by artificial intel-
ligence for predicting EGFR genotype and targeted therapy response in lung 
cancer: a multicohort study. Lancet Digit Health. 2022;4(5):e309–19. ​h​t​t​​p​s​:​/​​/​d​
o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​S​2​5​8​9​-​7​5​0​0​(​2​2​)​0​0​0​2​4​-​3​​​​​.​​​

20.	 Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): main-
taining and operating a public information repository. J Digit Imaging. 
2013;26(6):1045–57. https:/​/doi.or​g/10.10​07/s​10278-013-9622-7.

21.	 Bradley JD, Forster K. Data from NSCLC-Cetuximab. The Cancer Imaging 
Archive. Published online. 2018. https:/​/doi.or​g/10.79​37/T​CIA.2018.jze75u7v

22.	 Aerts HJWL, Wee L, Rios Velazquez E et al. Data From NSCLC-Radiomics (ver-
sion 4) [Data set]. The Cancer Imaging Archive. Published online. 2014. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​7​9​3​7​/​K​9​/​T​C​I​A​.​2​0​1​5​.​P​F​0​M​9​R​E​I​​​​​​​

23.	 Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype 
by noninvasive imaging using a quantitative radiomics approach. Nat Com-
mun. 2014;5:4006. https:/​/doi.or​g/10.10​38/n​comms5006.

24.	 Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G. Automatic lung 
segmentation in routine imaging is primarily a data diversity problem, not a 
methodology problem. Eur Radiol Experimental. 2020;4(1):50. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​
1​0​.​1​1​8​6​/​s​4​1​7​4​7​-​0​2​0​-​0​0​1​7​3​-​2​​​​​.​​​

25.	 Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image Comput-
ing platform for the Quantitative Imaging Network. Magn Reson Imaging. 
2012;30(9):1323–41. https:/​/doi.or​g/10.10​16/j​.mri.2012.05.001.

26.	 Shi Z, Traverso A, Soest J, Dekker A, Wee L. Technical note: ontology-guided 
radiomics analysis workflow (O‐RAW). Med Phys. 2019;46(12):5677–84. https:/​
/doi.or​g/10.10​02/m​p.13844.

27.	 Zhang Z, Wang Z, Yan M et al. Radiomics and dosiomics signature from 
whole lung predicts radiation pneumonitis: a model development 
study with prospective external validation and decision-curve analy-
sis. Int J Radiation Oncology*Biology*Physics Published Online August 
2022:S0360301622031893. https:/​/doi.or​g/10.10​16/j​.ijrobp.2022.08.047

28.	 Chen NB, Xiong M, Zhou R, et al. CT radiomics-based long-term survival 
prediction for locally advanced non-small cell lung cancer patients treated 
with concurrent chemoradiotherapy using features from tumor and tumor 
organismal environment. Radiat Oncol. 2022;17(1):184. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​
6​/​s​1​3​0​1​4​-​0​2​2​-​0​2​1​3​6​-​w​​​​​.​​​

29.	 Shen H, Zhu M, Wang C. Precision oncology of lung cancer: genetic and 
genomic differences in Chinese population. Npj Precision Oncol. 2019;3(1):1–
8. https:/​/doi.or​g/10.10​38/s​41698-019-0086-1.

https://doi.org/10.1016/j.acra.2020.11.018
https://doi.org/10.1016/j.acra.2020.11.018
https://doi.org/10.1016/j.acra.2020.12.007
https://doi.org/10.1016/j.acra.2020.12.007
https://doi.org/10.7150/thno.50565
https://doi.org/10.3390/cancers14030700
https://doi.org/10.3390/cancers14030700
https://doi.org/10.1002/ijc.34127
https://doi.org/10.3389/fmolb.2022.849108
https://doi.org/10.1016/j.ctrv.2013.10.001
https://doi.org/10.1016/j.ctrv.2013.10.001
https://doi.org/10.1016/j.semcancer.2019.12.021
https://doi.org/10.1016/j.semcancer.2019.12.021
https://doi.org/10.1080/14737140.2022.2019018
https://doi.org/10.1016/s0169-5002(00)00156-2
https://doi.org/10.1378/chest.13-1176
https://doi.org/10.1378/chest.13-1176
https://doi.org/10.2147/COPD.S167372
https://doi.org/10.1002/cam4.2333
https://doi.org/10.1111/crj.13139
https://doi.org/10.3390/cancers14040874
https://doi.org/10.3390/cancers14040874
https://doi.org/10.1016/j.lungcan.2018.11.006
https://doi.org/10.1016/j.lungcan.2018.11.006
https://doi.org/10.1097/JTO.0000000000000158
https://doi.org/10.1016/j.jtcvs.2014.08.086
https://doi.org/10.1016/j.jtcvs.2014.08.086
https://doi.org/10.1016/S2589-7500(22)00024-3
https://doi.org/10.1016/S2589-7500(22)00024-3
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.7937/TCIA.2018.jze75u7v
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1186/s41747-020-00173-2
https://doi.org/10.1186/s41747-020-00173-2
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1002/mp.13844
https://doi.org/10.1002/mp.13844
https://doi.org/10.1016/j.ijrobp.2022.08.047
https://doi.org/10.1186/s13014-022-02136-w
https://doi.org/10.1186/s13014-022-02136-w
https://doi.org/10.1038/s41698-019-0086-1


Page 9 of 9Yan et al. Radiation Oncology            (2025) 20:9 

30.	 Fave X, Zhang L, Yang J, et al. Delta-radiomics features for the prediction of 
patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7(1):588. https:/​
/doi.or​g/10.10​38/s​41598-017-00665-z.

31.	 Chen W, Hou X, Hu Y, Huang G, Ye X, Nie S. A deep learning- and CT image‐
based prognostic model for the prediction of survival in non‐small cell lung 
cancer. Med Phys. 2021;48(12):7946–58. https:/​/doi.or​g/10.10​02/m​p.15302.

32.	 Wang L, Dong T, Xin B, et al. Integrative nomogram of CT imaging, clinical, 
and hematological features for survival prediction of patients with locally 
advanced non-small cell lung cancer. Eur Radiol. 2019;29(6):2958–67. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​7​/​s​0​0​3​3​0​-​0​1​8​-​5​9​4​9​-​2​​​​​.​​​

33.	 Le VH, Kha QH, Hung TNK, Le NQK. Risk score generated from CT-Based 
Radiomics signatures for overall survival prediction in Non-small Cell Lung 
Cancer. Cancers (Basel). 2021;13(14):3616. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​9​0​/​c​a​n​c​e​r​s​1​3​1​
4​3​6​1​6​​​​​.​​​

34.	 Hou KY, Chen JR, Wang YC, et al. Radiomics-based deep learning prediction 
of overall survival in Non-small-cell Lung Cancer using contrast-enhanced 
computed Tomography. Cancers (Basel). 2022;14(15):3798. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​
3​3​9​0​/​c​a​n​c​e​r​s​1​4​1​5​3​7​9​8​​​​​.​​​

35.	 Li R, Peng H, Xue T, et al. Prediction and verification of survival in patients with 
non-small-cell lung cancer based on an integrated radiomics nomogram. 
Clin Radiol. 2022;77(3):e222–30. https:/​/doi.or​g/10.10​16/j​.crad.2021.12.002.

36.	 Wang L, Gao Z, Li C, et al. Computed tomography-based Delta-Radiomics 
analysis for discriminating Radiation pneumonitis in patients with 
Esophageal Cancer after Radiation Therapy. Int J Radiat Oncol Biol Phys. 
2021;111(2):443–55. https:/​/doi.or​g/10.10​16/j​.ijrobp.2021.04.047.

37.	 Liu Z, Wang S, Dong D, et al. The applications of Radiomics in Precision diag-
nosis and treatment of Oncology: opportunities and challenges. Theranos-
tics. 2019;9(5):1303–22. https:/​/doi.or​g/10.71​50/t​hno.30309.

38.	 Liu Y, Qi H, Wang C, et al. Predicting Chemo-Radiotherapy Sensitivity with 
Concordant Survival Benefit in Non-small Cell Lung Cancer via Computed 
Tomography Derived Radiomic features. Front Oncol. 2022;12:832343. https:/​
/doi.or​g/10.33​89/f​onc.2022.832343.

39.	 Yang L, Yang J, Zhou X, et al. Development of a radiomics nomogram based 
on the 2D and 3D CT features to predict the survival of non-small cell lung 
cancer patients. Eur Radiol. 2019;29(5):2196–206. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​7​/​s​0​0​
3​3​0​-​0​1​8​-​5​7​7​0​-​y​​​​​.​​​

40.	 Chen W, Qiao X, Yin S, Zhang X, Xu X. Integrating Radiomics with Genomics 
for Non-small Cell Lung Cancer Survival Analysis. J Oncol. 2022;2022. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​1​5​5​/​2​0​2​2​/​5​1​3​1​1​7​0​​​​​.​​​

41.	 Gharraf HS, Mehana SM, ElNagar MA. Role of CT in differentiation between 
subtypes of lung cancer; is it possible? Egypt J Bronchol. 2020;14(1):28. https:/​
/doi.or​g/10.11​86/s​43168-020-00027-w.

42.	 Lu EL, Li L, Yang L, Schwartz H, Zhao LH. Radiomics for classification of Lung 
Cancer histological subtypes based on Nonenhanced Computed Tomogra-
phy. Acad Radiol. 2019;26(9):1245–52. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​a​c​r​a​.​2​0​1​8​.​1​0​.​0​
1​3​​​​​.​​​

43.	 Tomashefski JF, Connors AF, Rosenthal ES, Hsiue IL. Peripheral vs central 
squamous cell carcinoma of the lung. A comparison of clinical features, 
histopathology, and survival. Arch Pathol Lab Med. 1990;114(5):468–74.

44.	 Sung YE, Cho U, Lee KY. Peripheral type squamous cell carcinoma of the lung: 
clinicopathologic characteristics in comparison to the central type. J Pathol 
Translational Med. 2020;54(4):290–9. https:/​/doi.or​g/10.41​32/j​ptm.2020.05.04.

45.	 Weeden CE, Gayevskiy V, Marceaux C, et al. Early immune pressure initiated 
by tissue-resident memory T cells sculpts tumor evolution in non-small cell 
lung cancer. Cancer Cell. 2023;41(5):837–e8526. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​c​e​l​
l​.​2​0​2​3​.​0​3​.​0​1​9​​​​​.​​​

46.	 Bove S, Fanizzi A, Fadda F, et al. A CT-based transfer learning approach to 
predict NSCLC recurrence: the added-value of peritumoral region. PLoS ONE. 
2023;18(5):e0285188. https:/​/doi.or​g/10.13​71/j​ournal.pone.0285188.

47.	 Ma Y, Li Q. An integrated model combined intra- and peritumoral regions for 
predicting chemoradiation response of non small cell lung cancers based 
on radiomics and deep learning. Cancer/Radiothérapie. 2023;27(8):705–11. 
https:/​/doi.or​g/10.10​16/j​.canrad.2023.05.005.

48.	 Zhang X, Zhang G, Qiu X, et al. Optimizing the size of Peritumoral Region for 
assessing Non-small Cell Lung Cancer Heterogeneity using Radiomics. In: Li 
Y, Huang Z, Sharma M, Chen L, Zhou R, editors. Health Information Science. 
Lecture Notes in Computer Science. Springer Nature; 2023. pp. 309–20. ​h​t​t​​p​s​:​
/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​9​8​1​-​9​9​-​7​1​0​8​-​4​_​2​6​​​​​.​​​

49.	 Spigel DR, Faivre-Finn C, Gray JE, et al. Five-year survival outcomes from the 
PACIFIC Trial: Durvalumab after Chemoradiotherapy in Stage III Non-small-cell 
Lung Cancer. J Clin Oncol. 2022;40(12):1301–11. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​2​0​0​/​J​C​O​.​
2​1​.​0​1​3​0​8​​​​​.​​​

50.	 Lam SK, Zhang Y, Zhang J, et al. Multi-organ Omics-based prediction for 
adaptive Radiation Therapy eligibility in nasopharyngeal carcinoma patients 
undergoing concurrent Chemoradiotherapy. Front Oncol. 2021;11:792024. 
https:/​/doi.or​g/10.33​89/f​onc.2021.792024.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1038/s41598-017-00665-z
https://doi.org/10.1038/s41598-017-00665-z
https://doi.org/10.1002/mp.15302
https://doi.org/10.1007/s00330-018-5949-2
https://doi.org/10.1007/s00330-018-5949-2
https://doi.org/10.3390/cancers13143616
https://doi.org/10.3390/cancers13143616
https://doi.org/10.3390/cancers14153798
https://doi.org/10.3390/cancers14153798
https://doi.org/10.1016/j.crad.2021.12.002
https://doi.org/10.1016/j.ijrobp.2021.04.047
https://doi.org/10.7150/thno.30309
https://doi.org/10.3389/fonc.2022.832343
https://doi.org/10.3389/fonc.2022.832343
https://doi.org/10.1007/s00330-018-5770-y
https://doi.org/10.1007/s00330-018-5770-y
https://doi.org/10.1155/2022/5131170
https://doi.org/10.1155/2022/5131170
https://doi.org/10.1186/s43168-020-00027-w
https://doi.org/10.1186/s43168-020-00027-w
https://doi.org/10.1016/j.acra.2018.10.013
https://doi.org/10.1016/j.acra.2018.10.013
https://doi.org/10.4132/jptm.2020.05.04
https://doi.org/10.1016/j.ccell.2023.03.019
https://doi.org/10.1016/j.ccell.2023.03.019
https://doi.org/10.1371/journal.pone.0285188
https://doi.org/10.1016/j.canrad.2023.05.005
https://doi.org/10.1007/978-981-99-7108-4_26
https://doi.org/10.1007/978-981-99-7108-4_26
https://doi.org/10.1200/JCO.21.01308
https://doi.org/10.1200/JCO.21.01308
https://doi.org/10.3389/fonc.2021.792024

	﻿Whole lung radiomic features are associated with overall survival in patients with locally advanced non-small cell lung cancer treated with definitive radiotherapy
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Patients and data sets
	﻿CT acquisition and ROI segmentation
	﻿Radiomic features extraction and feature selection
	﻿Construction of the models
	﻿Statistical analysis

	﻿Results
	﻿Patient characteristics
	﻿Radiomic feature selection and construction of models
	﻿Performance of the models

	﻿Discussion
	﻿Conclusion
	﻿References


