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Abstract
Background and purpose  The study aimed to create a radiomics model based on breast intra- and peri-tumoral 
regions in dynamic contrast-enhanced (DCE) MRI to distinguish benign from malignant breast lesions of Breast 
Imaging Reporting and Data System (BI-RADS) 4.

Materials and methods  A total of 516 patients from Hospital 1 were assigned to the training cohort. Then, 146 
and 52 patients were enrolled from Hospital 2 and 3, respectively, as the internal and external test cohort. Seven 
classification models were built, using features extracted from the intra- and peri-tumoral regions. Diagnostic 
performance was evaluated by receiver operating characteristics (ROC) analysis and compared by the DeLong test. 
Subgroup analysis was performed after stratifying all lesions by enhancement pattern and the subdivision of BI-RADS 
4.

Results  The Comb2 model, built with features from peri-tumoral 2 mm and intra-tumoral region, demonstrated 
the best performance with AUCs of 0.828 and 0.844 in the internal and external test cohort, respectively. The Comb2 
model was robust in both mass and non-mass enhancement (NME) lesions. At the three exploratory cutoff values 
on the ROC curve, the model identified 9.1% (sensitivity of C1 ≥ 98%), 27.3% (sensitivity of C2 ≥ 95%) and 36.4% 
(sensitivity of C3 ≥ 90%) of the benign lesions in the external test cohort. Applying the identified cutoff values in the 
external test cohort showed the potential to lower the number of unnecessary biopsies of benign lesions.

Conclusion  An MRI-based radiomics model built with features extracted from the intra-tumoral region combined 
with the peri-tumoral 2 mm showed the best potential to reduce false-positive diagnoses and may avoid unnecessary 
biopsies with a low underestimate risk.
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Introduction
Breast cancer is one of the most common cancers and the 
leading cause of cancer deaths in women, accounting for 
approximately 25% of new cancer cases in women and 
16% of cancer deaths [1]. Since the treatment options and 
prognosis for benign and malignant breast diseases differ, 
determining whether breast lesions are benign or malig-
nant is critical.

As a noninvasive imaging method with very high sen-
sitivity, dynamic contrast-enhanced MRI (DCE-MRI) 
has gained a pivotal role in breast cancer management 
[2, 3]. It allows the detection of breast cancers invisible 
on mammography in women with dense breast tissue 
[4–6] and can aid in the management of equivocal find-
ings on mammogram and ultrasound [7]. The diagnos-
tic challenge in DCE-MRI remains to distinguish benign 
from malignant enhancement. According to the Breast 
Imaging Reporting & Data System (BI-RADS) [8], breast 
lesions can be classified into 6 categories based on the 
probability of malignancy. BI-RADS category 4 (BI-RADS 
4) indicates a lesion that does not fulfill the criteria for 
malignancy but is suspicious enough to warrant biopsy. 
In women referred to biopsy due to BI-RADS 4 findings, 
86% of these lesions yield benign results [9]. Therefore, to 
avoid false-positive diagnoses, unnecessary biopsies or 
overtreatment, methods for distinguishing benign from 
malignant in BI-RADS 4 lesions are warranted.

In recent years, machine learning methods based 
on medical imaging, known as radiomics, have shown 
increasing clinical application value [10]. Radiomics can 
automatically extract large amounts of quantitative fea-
tures that are beyond human recognition to build clini-
cally useful models for disease diagnosis and prognosis 
[11, 12]. According to previous studies, radiomics mod-
els based on breast MRI have shown great potential to 
discriminate benign from malignant BI-RADS 4 lesions 
[13–18]. The majority of these investigations were single-
center, had small sample sizes, and lacked external vali-
dation. Furthermore, only the features extracted from the 
tumor area were used in model construction. The inter-
actions between tumor cells and the associated stroma 
are significantly associated with the disease progression 
and patient prognosis [19]. Therefore, the texture features 
derived from the areas surrounding the tumor may also 
provide valuable information to aid in diagnosis. Niu et 
al. have shown that features from peri-tumoral regions 
with 2 mm dilation distances in digital breast tomosyn-
thesis (DBT) can be used in the differentiation of benign 
and malignant breast lesions [20]. For MRI, prior studies 
have noted the importance of the peri-tumoral region in 
the diagnosis [21], prediction of treatment response [22], 

and assessment of molecular biomarkers of breast cancer 
[23, 24]. However, no published study reported the pre-
dictive value of the peri-tumoral region in distinguish-
ing benign from malignant breast lesions of BI-RADS 4 
based on DCE-MRI.

Accordingly, the aim of the study was to build a 
radiomics model using features extracted from the intra- 
and peri-tumoral regions to distinguish benign from 
malignant breast diseases in a multicenter study. Further-
more, we aimed to explore the optimal peri-tumoral size 
for investigation.

Methods
Patients
This multicenter retrospective study was approved by the 
Institutional Review Board and exempted from patient 
informed consent. According to the following criteria, 
patients who underwent breast DCE-MRI between 01 
January 2017 and 31 August 2021 were reviewed in Hos-
pital 1 (The First Affiliated Hospital of Sun Yat-sen Uni-
versity). Each of the patients was classified according to 
the fifth version of the BI-RADS guidelines [8]. The cri-
teria for inclusion were as follows: (i) Patients were diag-
nosed with a BI-RADS 4 or 5 breast lesion by breast MRI. 
(ii) Patients with benign or malignant breast diseases 
confirmed by histopathology; and (iii) Patients had com-
plete MRI images in the picture archiving and communi-
cation system (PACS) with axial DCE, DWI, and T2WI 
sequences obtained before patients underwent biopsy. 
The exclusion criteria were as follows: (i) nondiagnostic 
examinations (examination interrupted by the patient 
and artifacts); (ii) multi-foci lesions; (iii) received excision 
biopsy or anticancer therapy before MRI examinations; 
(iiii) incomplete clinicopathologic data. The flowchart of 
the whole study in Fig. 1.

Considering the future application of the model, the 
gain of preventing false-positive diagnosis was expected 
to be low in the BI-RADS 5 category. Therefore, model 
performance was evaluated only in BI-RADS 4 lesions. 
Patients from Hospital 1 were enrolled into the train-
ing cohort for model training and validation, and all BI-
RADS 5 lesions were excluded from validation. Then, 
patients were enrolled from Hospital 2 (Jieyang People’s 
Hospital) and Hospital 3 (The Seventh Affiliated Hospital 
of Sun Yat-sen University) with the same criteria, but only 
patients with BI-RADS 4 lesions were included. Patients 
from Hospital 2 and 3 were allocated to the internal and 
external test cohort, respectively. The recruitment of 
patients is shown in the Supplementary Figure S1.

Clinical data, such as age, BI-RADS category and 
pathology results were obtained by reviewing the medical 

Keywords  DCE-MRI, BI-RADS, Breast cancer, Radiomics, Machine learning



Page 3 of 11Hu et al. Radiation Oncology           (2025) 20:27 

records. All MR scans were reviewed by two radiolo-
gists with 5 and 20 years of experience in breast MRI 
interpretation. They recorded the enhancement pattern, 
and patients were grouped into mass and NME groups. 
Besides, they stratified the BIRADS 4 lesions into 4a, 4b, 
and 4c categories according to the BI-RADS 6th Edition 
Update presented at the 2023 RSNA annual meeting.

Image acquisition
MRI examinations were performed with a 3.0T MRI 
scanner equipped with a dedicated eight-channel bilat-
eral breast coil on patients in a prone position. The stan-
dard breast MRI examinations included T1W, T2W, 
DWI, and DCE sequences. After intravenous injection 
of the contrast agent 0.15 mmol/kg at 4 ml/s and subse-
quent flushing with an equal volume of saline at the same 
injection speed, eight phases of post-contrast scans were 
consecutively acquired. For each patient, eight phases 
of subtraction images were obtained by subtracting pre-
contrast images from eight post-contrast images. The 
detailed MRI scanning parameters of T1-DCE, FS-T2WI 
and ADC map in each center were listed in Supplemen-
tary Table S1. All images were extracted in DICOM 
format from the picture archiving and communication 
system.

Image preprocessing and ROI segmentation
The peak enhanced phase of the enhancement T1 images 
was selected according to the time intensity curve for 
subsequent preprocessing and segmentation. To cor-
rect the variation in imaging signal intensity caused by 
the bias field of MRI scanning, the N4 Bias Field Cor-
rection algorithm [25] was used before tumor segmenta-
tion. To achieve intensity homogeneity, the range of voxel 

intensity in MR image was scaled to 0-255, to avoid the 
influence of imaging intensity. Eventually, all images were 
resampled to 1*1*1 mm isotropic voxels using a trilinear 
interpolation algorithm.

After imaging prepossessing, the regions of interest 
(ROIs) of intra-tumoral regions were delineated manually 
via 3D slicer (Version 4.1; www.slicer.org) on each slice 
of image by a radiologist with 5 years of experience and 
confirmed by another radiologist with 20 years of expe-
rience. The peri-tumoral regions were then obtained by 
equidistant 3-dimensional dilation of the tumor border 
by 1, 2 and 3  mm, respectively, and the skin and chest 
wall were excluded.

Radiomic feature extraction
Radiomic features were extracted from ROIs using the 
Pyradiomics toolkit (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​R​a​d​i​​o​m​​i​c​s​/​p​y​r​a​
d​i​o​m​i​c​s). In the intra-tumoral region, 19 intensity-based 
first-order statistical features, 14 shape-based features 
(3D), 24 Gy level co-occurrence matrix (GLCM) features, 
16  Gy level size zone matrix (GLSZM) features, 16  Gy 
level run length matrix (GLRLM) features, 5 neigh-
borhood gray-tone difference matrix (NGTDM) fea-
tures, and 14 neighboring gray level dependence matrix 
(NGLDM) features were extracted from the original 
images. Moreover, Laplacian of Gaussian(LoG) imaging 
filters (kernel size: 1, 2, 3, 4, 5, and 6) and wavelet imag-
ing filters were used to deal with all the original images. 
Eventually, a total of 1409 intensity-based first-order sta-
tistical features and texture features were calculated and 
extracted from the intra-tumoral region. Features from 
the 1–3 mm peri-tumoral regions of were extracted fol-
lowing the same regimen. To avoid the influence of 
lesion position, the shape-based features were excluded, 

Fig. 1  The design of the whole study
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yielding 1395 features from each peri-tumoral region. 
The calculation formulas of radiomic features are listed 
in the Supplementary Material1. To ensure a uniform 
scale of value, all the radiomics features from the train-
ing cohort were standardized using z-score normaliza-
tion. The mean value of all lesions was subtracted by the 
feature value, and then the standard deviation (SD) was 
divided by the result. All features were standardized to a 
mean of zero and SD of one. Then the features of patients 
in the test cohorts were transformed according to the 
corresponding feature value in the training cohort.

Feature selection
To choose the feature that was relevant to the classifica-
tion of benign and malignant lesions, a series of feature 
selection methods were applied to the following seven 
feature sets in the training cohort: (1) the intra-tumoral 
region, (2) the peri-tumoral region of 1 mm, (3) the peri-
tumoral region of 2  mm, (4) the peri-tumoral region of 
3  mm, (5) the intra-tumoral region combined with the 
peri-tumoral region of 1 mm (6) the intra-tumoral region 
combined with the peri-tumoral region of 2 mm, and (7) 
the intra-tumoral region combined with the peri-tumoral 
region of 3 mm.

Initially, all features underwent statistical testing using 
the U-test and T-test, retaining features with a p-value 
less than 0.05. Next, correlation analysis was performed 

using Pearson’s correlation to identify and exclude highly 
correlated features, applying a threshold of 0.9. To fur-
ther refine the feature set, the Minimum Redundancy 
Maximum Relevance (mRMR) algorithm was employed, 
balancing feature relevance and redundancy, and reduc-
ing the feature pool to 64 candidates. The final fea-
ture selection was conducted using the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression. 
This approach penalizes regression coefficients to elimi-
nate irrelevant features, ensuring the model’s focus on 
predictive factors. The optimal regularization parameter 
(λ) was identified through 10-fold cross-validation, which 
retained only the most critical features for modeling. 
This comprehensive process, from statistical filtering to 
LASSO-based refinement, yielded a robust and parsimo-
nious radiomic signature for predictive modeling.

Model development and evaluation
To determine which region of the tumor showed the best 
classification ability, we built machine learning models 
using features extracted from each of the above seven fea-
ture sets based on Support vector machine (SVM), Ran-
domForest (RF) and Light Gradient Boosting Machine 
(GBM), respectively. The hyperparameters were tuned 
by a grid search approach and 10-fold cross-validation, 
as shown in Fig. 2. The 10-fold cross-validation refers to 
the random division of the data set into 10 sets, nine of 

Fig. 2  Visualization of model training
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which were used for training and the last of which was 
used for validation. This process was repeated 10 times, 
and the validation data differed each time. In each set, all 
BI-RADS 5 lesions were excluded manually during vali-
dation. Subgroup analysis was performed in the optimal 
model, based on two types of enhancement patterns and 
three subgroups of BI-RADS 4.

The Shapley (SHAP) method26 was used to facili-
tate the model interpretation. A total SHAP value for 
sample was calculated, and a higher value corresponded 
to a higher likelihood of the target outcome (i.e., malig-
nant lesion). Besides, features were ranked in descending 
order of their SHAP values to illustrate their contribution 
to the prediction.

To assess the rate of avoidable biopsies, three explor-
atory cutoff values on the ROC curve were examined 
(sensitivity of C1 ≥ 98%, C2 ≥ 95% and C3 ≥ 90%). The sen-
sitivity and specificity of the model in the test cohorts 
were calculated by applying the three cutoff values 
achieving from the training cohort.

Besides, to explore whether the discordance between 
the training and test cohorts can influence the model 
performance, another 7 models based on 7 feature sets 
of different ROIs were training only in the patients with 
BI-RADS 4 lesions from Hospital 1 (Training cohort 2). 
The test cohorts were the same as the models mentioned 
above.

Statistical analysis
The data were calculated and analysed with SPSS (soft-
ware version, 22.0). All numeric data were calculated 
and expressed as the mean ± SD, while categorical data 
were expressed as the relative distribution frequency and 

percentage. The receiver operating characteristic (ROC) 
curve constructed with statistics packages in Python 
3.7.0 was used to assess the classification performance by 
calculation of the area under the ROC curve (AUC). The 
corresponding accuracy, sensitivity, and specificity were 
also determined. The 95% confidence interval (CI) of 
the AUC was calculated by bootstrapping. The DeLong 
test was used to compare the difference in the diagnos-
tic performance between the classification models. A 
P value < 0.05 was considered statistically significant.

Results
Patients and lesions
In total, 516 patients from Hospital 1 comprised the 
training cohort (mean age 46.9 ± 10.0 years), and they 
included 197 and 319 patients with benign and malignant 
disease, respectively. The internal test cohort included 
146 patients (mean age 50.5 ± 11.2; 52 with benign lesions 
and 94 with malignant lesions). And the external test 
cohort included 52 patients (mean age 49.3 ± 11.1; 22 
with benign lesions and 30 with malignant lesions). The 
pathology results are summarized in Table 1. The major 
malignant lesions included invasive ductal carcinoma 
(IDC), ductal carcinoma in situ (DCIS) and invasive lob-
ular carcinoma (ILC). In addition, fibrocystic changes, 
fibroadenoma and papilloma were the three most com-
mon benign lesions. All Lesions stratified by BI-RADS 
subcategory and enhancement pattern are summarized 
in Table 2 and Supplementary Table S2.

Model construction and performance evaluation
After LASSO regression as the last step of feature selec-
tion, seven sets of features were retained as the most 

Table 1  Histological diagnosis of all lesions including in the training and test cohorts
Histopathological type Training cohort Internal test cohort External test cohort

No. of lesions % No. of lesions % No. of lesions %
Benign 197 52 22
  Fibrocystic changes 100 50.8 5 9.6 7 31.8
  Fibroadenoma 35 17.8 25 48.1 10 45.4
  Papilloma 26 13.2 11 21.2 1 4.5
  Usual ductal hyperplasia 15 7.6 2 3.8 2 9.1
  Atypical ductal hyperplasia 8 4.1 2 3.8 2 9.1
  Phyllodes 6 3.0 6 11.5 0 0.0
  Inflammation 4 2.0 0 0.0 0 0.0
  Sclerosing adenosis 2 1.0 1 1.9 0 0.0
  Lobular hyperplasia 1 0.5 0 0.0 0 0.0
Malignant 319 94 30
  Invasive ductal carcinoma 234 73.4 62 66.0 24 80.0
  Ductal carcinoma in situ 52 16.2 19 20.2 3 10.0
  Invasive lobular carcinoma 15 4.7 6 6.4 0 0.0
  Invasive mucinous carcinoma 11 3.4 1 1.1 2 6.7
  Other* 7 2.2 6 6.4 1 3.3
*Other: Lobular carcinoma in situ (LCIS), invasive papillary cancer; malignant phyllodes, medullary carcinoma, metastases
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relevant to the prediction of malignancy. The selected 
radiomic features for the model input and their regres-
sion coefficients are revealed in the Supplementary Fig-
ure S2-8.

Then, we evaluated the model performance using 
three different machine learning algorithms for each of 
the seven feature sets, as shown in Supplementary Table 
S3, and the algorithm with the highest AUC was chosen 
for the following comparison. Table 3 provides an over-
view of the seven classification models based on the best 
algorithm for the prediction of malignant lesion in each 
cohort, and the corresponding ROC curves are presented 
in Fig.  3. The models established from different ROIs 
were compared by DeLong test, as shown in the Supple-
mentary Figure S9.

In the training cohort, the model built with features 
from the intra-tumoral region yielded an AUC of 0.898 
(95% CI, 0.867–0.928), while combining intra and peri-
tumoral features improved the AUCs. Among the fusion 
models, the Comb2 (intra + peri2mm) model exhibited 

the best performance, achieving an AUC of 0.916 (95% 
CI: 0.886–0.946), which surpassed the Comb3 model 
(AUC = 0.856, p = 0.001 ). There was no significant dif-
ference in performance between the Comb2 model and 
either the Intra model (p = 0.127) or the Comb1 model 
(p = 0.454). In the internal test cohort, the Comb2 model 
achieved an AUC of 0.828 (95% CI: 0.763–0.893), sig-
nificantly outperforming the Intra model (AUC = 0.724, 
p = 0.006). In the external test cohort, the intra-only 
model achieved an AUC of 0.797 (95% CI, 0.667–0.927). 
Among the fusion models, Comb2 again showed the best 
performance, achieving an AUC of 0.844 (95% CI: 0.713–
0.975), outperforming Comb1 (AUC: 0.835) and Comb3 
(AUC: 0.812). Integrating the intra- and peri-tumoral fea-
tures consistently improved the model’s predictive per-
formance across all cohorts. The fusion of features from 
intra-trumoral region and peri-tumoral region of 2 mm 
demonstrated superior AUC values compared to other 
fusion models, indicating that the 2  mm peri-tumoral 

Table 2  Overview of all lesions stratified by enhancement pattern
Shape Training cohort Internal test cohort External test cohort

Benign
(n = 197)

Malignant(n = 319) p value Benign
(n = 52)

Malignant(n = 94) p value Benign
(n = 22)

Malignant(n = 30) p value

Mass 161 278 0.121 44 69 0.179 17 21 0.789
NME 36 41 8 25 5 9
Abbreviations: NME, non-mass enhancement

Table 3  Performance of the best models established by using the features extracted from seven different ROIs
Models Algorithm Cohort AUC 95% CI Sensitivity Specificity Accuracy PPV NPV
Intra SVM Training 0.898 0.867–0.928 0.793 0.821 0.732 0.798 0.817

Internal test 0.724 0.633–0.816 0.723 0.712 0.719 0.819 0.587
External test 0.797 0.667–0.927 0.767 0.682 0.731 0.767 0.682

Peri1 SVM Training 0.801 0.755–0.846 0.948 0.291 0.600 0.543 0.864
Internal test 0.793 0.719–0.867 0.968 0.250 0.712 0.700 0.812
External test 0.815 0.696–0.934 0.933 0.227 0.635 0.622 0.714

Peri2 SVM Training 0.910 0.881–0.939 0.885 0.760 0.819 0.766 0.882
Internal test 0.783 0.708–0.858 0.851 0.519 0.733 0.762 0.659
External test 0.823 0.704–0.942 0.867 0.773 0.827 0.839 0.810

Peri3 LightGBM Training 0.817 0.775–0.860 0.649 0.791 0.724 0.734 0.718
Internal test 0.748 0.663–0.833 0.628 0.769 0.678 0.831 0.533
External test 0.788 0.659–0.917 0.700 0.773 0.731 0.808 0.654

Comb1 SVM Training 0.907 0.879–0.936 0.764 0.862 0.816 0.831 0.805
Internal test 0.737 0.651–0.822 0.670 0.712 0.685 0.808 0.544
External test 0.835 0.715–0.955 0.967 0.545 0.788 0.744 0.923

Comb2 SVM Training 0.916 0.886–0.946 0.862 0.801 0.830 0.794 0.867
Internal test 0.828 0.763–0.893 0.830 0.615 0.753 0.796 0.667
External test 0.844 0.713–0.975 0.967 0.682 0.846 0.806 0.937

Comb3 SVM Training 0.856 0.817–0.894 0.960 0.332 0.627 0.560 0.903
Internal test 0.788 0.712–0.865 0.968 0.173 0.685 0.679 0.750
External test 0.812 0.696–0.928 0.967 0.227 0.654 0.630 0.833

* Intra represents the model based on features extracted from the intra-tumoral region. Peri1, Peri2 and Peri3 represent the models based on features extracted 
from the peri-tumoral regions of 1 mm, 2 mm and 3 mm, respectively. Comb1, Comb2 and Comb3 represent the models based on features extracted from the intra-
tumoral region combined with the peri-tumoral regions of 1 mm, 2 mm and 3 mm, respectively. Abbreviations: AUC, the area under curve; CI, confidence interval; 
PPV, Positive predictive value; NPV, Negative predictive value; SVM, Support vector machine; GBM, Gradient Boosting Machine
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region provides the optimal spatial context for the pre-
diction of malignant lesion.

Only patients with BI-RADS 4 lesions (196 with benign 
lesions and 174 with malignant lesions) from Hospital 1 
were used as a new training cohort (Training cohort 2). 
The test cohorts were the same as the origin work. The 
performance of 7 models based on different ROIs were 
shown in Supplementary Table S4, Figure S10. Those 
new models trained only in BI-RADS 4 lesions did not 
demonstrate superiority in all the cohorts, compared 
to the previous models. Therefore, the Comb2 model 
was regarded as the optimal model and used for further 
analysis.

ROC analysis was applied for only mass lesions and 
only NME lesions separately using the Comb2 model 
as shown in Fig.  4. The results of only NME lesions 
(AUCs = 0.921, 0.935 and 0.933 in the training, internal 
and external test cohort, respectively) were no worse than 
that of only mass lesions (AUCs = 0.916, 0.791 and 0.818 
in the training, internal and external test cohort, respec-
tively) for distinguishing malignant and benign breast 
lesions. Besides, the performance of Comb2 model in 
three subcategories of BI-RADS 4 lesions was also evalu-
ated (Supplementary Figure S11). The Comb2 model 
exhibited stable performances, especially in BI-RADS 4a.

Analysis of the most predictive features
SHAP analysis was used to identify the predominant fac-
tors influencing the final output of the Comb2 model, as 
shown in Fig.  5. The SHAP bar plot (Fig.  5A) was gen-
erated by calculating the SHAP values for each feature, 
thereby illustrating the impact of feature on the predic-
tion outcome of a specific sample. The SHAP bees-warm 
plot (Fig. 5B) displays the impact of top features on the 
model’s output. For each feature, dots to the right are 
related to a higher risk of malignancy, while they have a 
negative impact if they are positioned on the right. The 
color of the dots indicates the magnitude of the feature 
value, which transitions from blue (low values) to red 
(high values). Among the five most important features, 
the firstorder_Skewness, gldm_DependenceVariance, 
glszm_SmallAreaEmphasis of the intra-tumoral area and 
the glszm_ LowGrayLevelZoneEmphasis of the peri-
tumoral region of 2 mm were related to malignancy, for 
the red dots are predominantly on the right side. Con-
versely, the high value of glszm_Zone% in the intra-
tumoral region had the opposite effect.

Estimation of the potential to avoid unnecessary biopsies
The summary of sensitivity and specificity values at dif-
ferent cutoff values in the training cohort and test cohort 

Fig. 4  ROC Curves of the optimal model for lesion discrimination in mass and NME lesions in the training cohort (A), internal test cohort (B) and external 
test cohort (C)

 

Fig. 3  ROC curves of the optimal models established by the features extracted from seven different ROIs in the training cohort (A), internal test cohort 
(B) and external test cohort (C)
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are displayed in Table 4. At the cutoff values of C1, C2 and 
C3, the model identified 29.6% (58/196), 32.1% (63/196) 
and 79.6% (156/196) of the benign lesions, respectively, 
in the training cohort, showed the potential to lower the 
number of unnecessary biopsies of benign lesions. At 
the cutoff of C1, 58 patients in the training cohort would 
be exempted from biopsy, with only 3 malignant lesions 
were missed. Applying the identified cutoff values in the 

external test cohort, the model identified 9.1% (sensitiv-
ity of C1 ≥ 98%), 27.3% (sensitivity of C2 ≥ 95%) and 36.4% 
(sensitivity of C3 ≥ 90%) of the benign lesions, showed the 
potential to lower the number of unnecessary biopsies of 
benign lesions.

Table 4  Performance of the Comb2 model at 3 operating points
Target Sensitivity Training cohort Internal test cohort External test cohort

Actual sensitivity Specificity Actual sensitivity Specificity Actual sensitivity Specificity
98% 98.3% 29.6% (58/196) 96.8% 1.9% (1/52) 100.0% 9.1% (2/22)
95% 95.4% 32.1% (63/196) 93.6% 9.6% (5/52) 90.0% 27.3% (6/22)
90% 90.2% 79.6% (156/196) 70.2% 23.1% (12/52) 80.0% 36.4% (8/22)

Fig. 5  The Comb2 model utilizing the SHAP algorithm. (A) The ranking of feature importance for all samples. (B) The SHAP value of each sample. Each dot 
represented a sample. As the color becomes redder, the feature’s value increases, while a bluer color indicates a lower value
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Discussion
In this multicenter study, we investigated the ability of 
DCE-MRI based radiomics models to distinguish benign 
from malignant breast lesions stratified as BI-RADS 4, 
including features extracted from intra- and peri-tumoral 
regions. Our findings showed that the peri-tumoral 
regions have additional predictive values relative to the 
intra-tumoral regions, and the model built with features 
extracted from the intra- tumoral region combined with 
peri-tumoral region showed the best performance to 
reduce false-positive diagnoses with a low risk of missing 
cancer.

There have been several radiomics models based on 
breast MRI for distinguishing between benign and malig-
nant disease, and the performance of those models was 
moderate (AUC ranged between 0.790 and 0.960) [13–
18]. However, these results might not be directly compa-
rable to our results because they were mainly based on 
single institution data. In addition, to make our model 
closer to clinical reality, the BI-RADS 5 lesions were 
excluded in the performance evaluation. The rationale 
for this omission is that the problem of false-positives 
seldom occurs in BI-RADS 5, for BI-RADS 5 lesions 
have typical signs of malignancy, and more than 95% of 
them are malignant [8]. Compared to previous work, our 
model is tested on the most difficult and clinically rele-
vant cases

This study represents the first attempt to systemati-
cally explore the optimal size of peri-tumoral region in 
the diagnosis of BI-RADS 4 lesions and was validated 
in an external test cohort. Previous studies have pri-
marily focused on the parenchyma of lesions, and only 
features extracted from the tumor region were utilized 
in radiomics analysis. Peri-tumoral region was the tis-
sue surrounding the tumor and different from nor-
mal tissue due to the tumor invasion, which provides 
additional information about tumor pathophysiology 
as reported [27–29]. Niu et al. found that the features 
from the peri-tumoral regions at 2  mm dilation dis-
tances in the DBT image showed the best discrimi-
native performance in diagnosing breast cancer [20]. 
In our study, the models built with features from the 
combined regions achieved better performance than 
models built with features from the tumor area alone, 
and peri-tumoral range of 2  mm is the optimal, consis-
tent with previous work. Radiomics features extracted 
from the proximal peri-tumoral stroma have higher 
predictive power than the other regions. In the Comb2 
model, log_sigma_1_0_mm_3D_firstorder_Skewness, 
log_sigma_2_0_mm_3D_gldm_DependenceVariance, 
log_sigma_4_0_mm_3D_glszm_SmallAreaEmphasis 
and wavelet_HHH_glszm_Zone% extracted from the 
intra-tumoral region and log_sigma_3_0_mm_3D_
glszm_ LowGrayLevelZoneEmphasis extracted from 

the peri-tumoral 2  mm significantly contributed to the 
diagnosis of malignancy. Those transform-based fea-
tures were extracted from filtered images using wavelet 
filters and LoG filters. Considering the first order feature 
reflects the gray value distribution within the ROI, the 
high value of firstorder_Skewness revealed that malig-
nant lesions exhibited greater asymmetry with respect 
to gray value distributions about the mean as compared 
with benign lesions. Besides, the high-order features of 
GLDM and GLSZM could quantify the spatial relation-
ships and interactions between pixel intensities, which 
may help to capture the distinctive heterogeneity of intra- 
and peri-tumoural regions.

BI-RADS 4a is generally regarded as a low-risk disease, 
with a large part of the pathology result after biopsy is 
confirmed to be benign, leading to an unnecessary inva-
sive examination [30]. By further analysis of BI-RADS 
4a lesion, clinicians can define whether the patients are 
suitable for short-term follow-up or are recommended 
to biopsy. A multicenter study by Niu et al. incorpo-
rated clinical factors and imaging characteristics of 
ultrasound for the classification of BI-RADS 4a, yielding 
the AUC of 0.782-0.747 [31]. Rong et al. utilized the BI-
RADS lexicon from contrast-enhanced mammography 
in the lesions previously DBT classified as BI-RADS 4a, 
achieving AUCs between 0.880 and 0.906 [32]. Specially, 
after stratified by the subcategories of BI-RADS 4, the 
Comb2 model in our study showed stable distinguish 
ability in the subgroup of BI-RADS 4a, with the AUCs of 
0.824 and 0.917 in the internal and external test cohort, 
respectively.

Breast lesions on MRI can be divided into two catego-
ries according to enhancement pattern, i.e., mass, and 
NME. Compared to mass lesions, detection and diagno-
sis of NME have been known as a more challenging prob-
lem [33]. The common histopathology that may manifest 
as NME includes benign conditions such as fibrocystic 
or proliferative changes, and malignant lesions such as 
DCIS and ILC [34]. Most prior studies have been focused 
on the diagnosis of mass lesions, primarily because of the 
challenges in determining the tumor border of NME. To 
mimic clinical practice, both mass and NME lesions were 
included in our study. Comparable performance was 
observed between mass and NME lesions, indicating that 
the model was robust.

In our study, 53.0% (196/370) in the training cohort, 
35.6% (52/146) in the internal test cohort and 42.3% 
(22/52) in the external test cohort of BI-RADS 4 lesions 
were pathologically confirmed to be benign, indicating 
that more than half of the patients received unnecessary 
biopsies. Although AUC is a routine statistic to evaluate 
model performance, the specificity on high sensitivity is 
also important in clinical management, which represents 
the number of biopsies that would be avoided with a low 
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risk of missing cancer. At the cutoff of C1, 58 patients 
with benign lesions would have been not recommended 
for biopsy in the training cohort, with a satisfactory sen-
sitivity of 98.3%. The three missed cases were all DCIS. 
Applied the cutoff of C1 to the internal and external test 
cohort, the sensitivity was 96.8% and 100%, respectively. 
Since this was a retrospective and multicenter study, 
the slight discordance of sensitivity at the same cutoff 
value may have been caused by the differences in scan-
ning equipment and indication of MRI examination. The 
false negative cases in the internal test cohort were DCIS 
(2/3) and ILC (1/3). Growing evidence has suggested that 
up to 80% of DCIS cases may be indolent, which rarely 
progress to invasive cancer [35, 36]. MRI was reported to 
be less sensitive in the diagnosis of DCIS than invasive 
cancer, partly because a substantial proportion of DCIS 
cases do not exhibit the typical enhancement observed in 
invasive cancer [37, 38]. Radiomics features from MRI do 
provide additional information for the non-invasive diag-
nosis of breast cancer.

There still exist some limitations in our study. First, the 
retrospective nature and comparatively low proportion 
of benign lesions limited the ability to perform strati-
fied analyses. Second, to ensure a confirmed pathological 
result, this study only included patients who received 
breast surgery or core needle biopsy. The patients who 
were unwilling to undergo the operation or those who 
were in a follow-up process were ruled out, creating a 
possible source of selection bias. Third, we only explored 
the radiomics features extracted from DCE-MRI, 
and more information might be obtained from other 
sequences and other image modalities to explore the 
diagnosis ability of multi-omics model.

Conclusion
The study demonstrated that the MRI-based radiomics 
model built with features extracted from the combined 
intra-tumoral and peri-tumoral 2  mm regions showed 
the best potential to reduce false-positive diagnoses and, 
consequently, avoid unnecessary biopsy with a low risk of 
missing cancer.
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