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the short term, and lung fibrosis, weakened pulmonary 
functions, and death in severe cases in the late stage, 
which remains a major resistance to tumor treatment 
[3]. The traditional view is that RILI is caused by direct 
damage to type II alveolar epithelial cells and capillaries 
by ionizing radiation [4], but recent studies have shown 
that RILI is a cascade of oxidative stress damage, target 
cell injury, and cytokine release [5–7]. RILI manifests 
as a pathological process of immune response induced 
by inflammatory mediator in the acute/subacute phase 
and fibroblast activation and proliferation, extracellular 
matrix (ECM) deposition and eventual development of 
pulmonary fibrosis in the chronic phase [8].

Notably, the risk of RILI triggered by combination 
therapy has further increased with the widespread use 
of immune checkpoints in clinic. Recent research has 
revealed functional pathological features of alveolar 
epithelial cells, myeloid immune cells and fibroblasts 
in RILI [9]. Therefore, based on the research on RILI 

Introduction
Currently, thoracic tumors have high morbidity and mor-
tality rates worldwide [1]. Radiotherapy is an important 
treatment for thoracic tumors, but radiation-induced 
lung injury (RILI), the most common adverse effect of 
thoracic radiotherapy, has a prevalence up to 31.4% [2]. 
RILI, divided into grade 1 to 5 sequentially based on 
severity, causes cough, shortness of breath, and fever in 
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in recent years, this paper elaborated the mechanisms 
related to the occurrence and development of the dis-
ease from the perspectives of key effector cells including 
alveolar epithelial cells, vascular endothelial cells, myo-
fibroblasts/ fibroblasts, and macrophages. Besides, the 
roles of crucial pathways including TGF-β classical and 
non-classical pathways, HMGB1/NF-κB pathway and 
autophagy-related pathways are also summarized. Fur-
thermore, the research progress related to the prediction 
and medication treatment of RILI is generalized in this 
paper, attempting to provide assistance for the preven-
tion, assessment and management of RILI.

Key effector cells in radiation-induced lung injury
Alveolar epithelial cells (AECs)
After exposure to ionizing radiation, alveolar epithelial 
cells, an important component of the capillary barrier, are 
damaged by oxidative stress from reactive oxygen species 
(ROS) initially. Type I AECs lack proliferative capacity 
and undergo senescence, necrosis, and apoptosis induced 
by ionizing radiation. Type II AECs can differentiate into 
type I AECs as their progenitor cells and can function to 
remove excess alveolar fluid, reduce lung inflammation 
and intrinsic immune response. After radiation injury, 
type II AECs become myofibroblasts through epithe-
lial- mesenchymal transition (EMT) driven by TGF-β 
signal and undergo aberrant proliferation and accumula-
tion, which exacerbates pulmonary fibrosis [10]. In addi-
tion, the secretion of pulmonic surface active proteins is 
reduced due to dysfunction of type II AECs, resulting in 
increased alveolar tension and decreased structural sta-
bility, which can lead to pneumonedema and atelectasis 
[11]. Meanwhile, damage to alveolar epithelial cells pro-
motes the secretion of pro-inflammatory and pro-fibrotic 
factors such as IL-13, TGF-β1, and PDGF, which exacer-
bate radiologic lung injury [12].

Vascular endothelial cells (VECs)
VECs, as an important component of the alveolar gas 
exchange mechanism and one of the components of 
the capillary barrier, can be injured by ROS, causing 
decreased endothelial nitric oxide production owing 
to impaired nitric oxide synthase activity, leading to 
endothelium- dependent vasodilatory dysfunction [13]. 
Meanwhile, VECs, as a continuous layer on the sur-
face of the vascular lumen, lose the barrier function and 
induce a consequent deterioration in vascular morphol-
ogy in response to ionizing radiation-induced release of 
oxygen radicals and proteases, which leads to vascular 
endothelial swelling, increased vascular permeability, 
inflammatory infiltration, and tissue edema during the 
acute phase, while capillary collapse and loss of clone-
forming function during the chronic phase [14]. Recent 
studies have suggested that VECs develop a high degree 

of heterogeneity after acute lung injury [15]. Single cell 
sequencing has shown that new subpopulations of endo-
thelial cells with high expression of PD-L1 and TGF-β 
emerge after radiotherapy may be associated with extra-
cellular matrix deposition and pulmonary fibrosis [16]. 
These findings suggest that VECs may play different roles 
in the RILI process due to their heterogeneity and altered 
functions.

Myofibroblasts and fibroblasts
Myofibroblasts, considered as the principal effector cells 
for extracellular matrix synthesis, are low in normal lung 
tissue and can be transformed during the RILI process 
by three main pathways: fibroblast differentiation, epi-
thelial/endothelial cells undergoing mesenchymal cell 
transformation, and bone marrow stem cell origin. And 
fibroblasts, which are the main source of myofibroblasts, 
play an important role in the promotion of wound heal-
ing, the remodeling of the extracellular matrix and the 
inflammatory immune response [17]. Recent applications 
of single-cell sequencing have revealed a highly heteroge-
neous and functionally diverse population of fibroblasts 
in different tissues and activation states [18]. Fibroblasts 
can act as inflammatory mediators and sense damage-
associated molecular patterns (DAMPs) released during 
tissue injury and remodeling via toll-like receptors to 
memorize inflammatory injury, secrete a variety of cyto-
kines and chemokines subsequently, which can rebuild 
the ECM, recruit immune cells and modulate chronic 
inflammation [19]. Following ionizing radiation stimula-
tion, quiescent fibroblasts are activated and differentiate 
into myofibroblasts, and subsequent persistent inflam-
matory signals together with resident myofibroblasts ini-
tiate type II EMT [20]. It causes disruption of epithelial 
cell connectivity, loss of polarity and acquisition of motil-
ity and invasiveness, upregulation of mesenchymal gene 
expression, increased ECM synthesis and accumulation, 
and excessive enhancement of tissue repair and wound 
healing, ultimately resulting in pulmonary fibrosis [21]. 
Therefore, intervention of the pathways that drive the 
EMT process and identification of the source cells in the 
transformation are key to RILI treatment.

Macrophages
Macrophages, as a critical component of the intrinsic 
immune system of myeloid origin, participate in main-
taining homeostasis, modulating inflammation, and 
repairing injury in lung tissues, and their remarkable 
plasticity results in exhibition of a high degree of het-
erogeneity under pathological conditions [22]. Typi-
cally, macrophages can be divided into 2 subpopulations 
broadly, the classically activated macrophages M1 and 
the alternatively activated macrophages M2. In the acute 
injury, lung-resident macrophages and monocyte-derived 
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macrophages can be abnormally activated by ROS, 
DAMPs, and cytokines including TNF-α and IL-6 [23], 
to polarize to the M1, which can exert pro-inflammatory 
and cytotoxic effects, secrete chemokines and inflamma-
tory factors. This effect induces inflammatory storms, 
which form an inflammatory microenvironment and 
recruit other immune cells, including neutrophils and 
monocytes, to infiltrate the lung tissue and cause pro-
longed inflammation [24]. Meanwhile, the differentiation 
of AECs can be inhibited by IL1-β secreted by intersti-
tial macrophages, resulting in incomplete repair and 
impaired regeneration of lung tissue [25].

In the chronic stage, the mitochondrial dysfunction of 
macrophages is mediated by persistent alveolar injury 
and incomplete repair [26]. Alveolar macrophages are 
polarized to M2 in response to IL-4 and IL-13, and M1 is 
converted to M2 in response to MCP-inducible protein 1 
[27], which induces overexpression of fibrosis promoting 
and wound healing phenotypes to exacerbate pulmonary 
fibrosis. Additionally, studies have revealed that the inter-
action between macrophages and other effector cells, 
such as fibroblasts [28], VECs and type II AECs [29], 
plays a contributory role in the lung fibrosis, which may 
provide new targets for RILI therapy.

Key effector cells and relevant mechanisms during RILI 
occurrence and development are shown in Fig. 1. As the 
major effector cell population in fibrosis, myofibroblasts 
and fibroblasts have received much attention and a large 
number of studies have investigated them as potential 
targets for the treatment of fibrosis. Research interests 
include targeting stretch-activated channels, intercellular 

communication such as gap junction and tight junction, 
ECM adhesion and integrins, and TGF-β release [30–33]. 
However, the specificity of radiation-induced lung injury 
is that the patient may have a co-existing tumor burden. 
For this kind of patients, targeting the myofibroblasts and 
fibroblasts, some of which are highly heterogeneous can-
cer-associated fibroblasts (CAF) [34], is a barrier of the 
transition from preclinical to clinical trials.

Key signaling pathways in radiation-induced lung 
injury
TGF-β/Smad signaling pathway
The TGF-β/Smad signaling pathway is a classic cell mem-
brane-nuclear signaling pathway that plays an impor-
tant role in the pathophysiological processes of multiple 
organ systems through interactions with various spec-
trum-defining, signal-driven transcription factors [35]. 
Under physiological conditions, TGF-β cross-links with a 
latency-associated peptide (LAP) dimer to form a com-
plex, which is deposited in the ECM [36]. Under patho-
logical conditions, the L-TGF-β complex is cleaved by a 
variety of serine proteases to release active TGF-β [37], 
or tension generated by integrin-transduced cell contrac-
tion causes unfolding of the LAP structural domains and 
TGF-β release [38]. During the fibrotic process, TGF-β 
can be activated by ROS to recognize and bind to TGF-β 
receptor II on the surface of the cell membrane, which in 
turn recognizes and phosphorylates TGF-β receptor I. In 
the cytoplasm, the phosphorylation of Smad2 and Smad3 
is mediated through the intermediary of Smad7 protein 
and forms a complex with Smad4, which is translocated 

Fig. 1 Key effector cells in radiation-induced lung injury. After radiation injury, alveolar epithelial cells secrete various factors and transform into myo-
fibroblasts through EMT. The barrier function of endothelial cells in blood vessels is impaired after radiation injury, leading to the secretion of cytokines 
and increased vascular permeability. Macrophages respond to MCP-1 signals secreted by alveolar epithelial cells, which are recruited and activated in the 
lungs, and interact with fibroblasts to reconstruct ECM. Abbreviations: TGF-β1, transforming growth factor-β1; PDGF, platelet derived growth factor; IL-4, 
interleukin-4; IL-13, interleukin-13; MCP-1, monocyte chemoattractant protein-1; CSF, colony-stimulating factor; VEGF, vascular endothelial growth factor; 
IL-1β, interleukin-1β; EMT, epithelial-mesenchymal transition
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to the nucleus, regulating the expression of target genes 
and transcription of pro-fibrotic molecules and activat-
ing fibroblasts and myofibroblasts [39, 40]. Interestingly, 
recent studies have shown that associated noncoding 
RNAs can promote pathological processes dominated by 
TGF-β/Smad pathway through enhancement and prolon-
gation of signal activity [41, 42], which may reveal novel 
therapeutic targets for RILI.

To resist the release of active TGF-β, previous stud-
ies have achieved the prevention of lung fibrosis in a 
mouse model by knockout and inhibition of integrin β3 
[43], and it is worth mentioning that the radioligand of 
αvβ6 could be utilized as a marker in combination with 
PETCT to detect the early diagnosis of RILI in clinic 
[44]. Targeting the initiating link of the TGF-β pathway, 
previous research reveals that connective tissue growth 
factor (CTGF) antibodies could reverse RILI in mice by 
inhibiting the fibroblast proliferation and migration [45]. 
While targeting TGF-β receptor I was reported to be a 
promising strategy for pulmonary fibrosis [46]. To inhibit 
the interactions of the Smads family of proteins, Cao et 
al. used thujaplicin to inhibit Smad3 activity and EMT 
to treat RILI [47]. In addition, Lan et al. Reported that a 
bifunctional fusion protein, M7824, of which structure 
is a PD-L1 antibody coupled to TGF-β receptor II, could 
achieve anti-tumor effects while attenuating RILI in a 
mouse model [16]. Considering the mediation of immune 
evasion by the TGF-β/Smad pathway in the tumor 
microenvironment (TME) [48], it is significant to com-
bine anti-tumor therapy with mitigation of RILI through 
inhibition of multifunctional pathways.

TGF-β nonclassical pathway
In addition to interacting with Smad family proteins, 
TGF-β can activate other signaling molecules in a cell 
type dependent manner, such as TAK1/MAPK, PI3K/
AKT and RHOA/ROCK, which are known as the non-
classical pathways [49]. In previous studies, associations 
between the non-classical signaling pathways and fibro-
sis have been revealed. A previous study showed that 
Schisantherin A could inhibit the activation of TAK1/
MAPK pathways mediated by TGF-β1, exerting an antifi-
brotic effect [50]. Qian et al. found that TGF-β1 activates 
the PI3K/AKT pathway and downregulates FOXO3a 
expression, which induces EMT in alveolar epithelial 
cells [51]. Gallic acid has been reported to reduce α-SMA 
and F-actin formation by inhibiting the RhoA/ROCK sig-
nalling cascade stimulated by TGF-β [52]. Furthermore, 
ROCK2 has been shown to crosstalk with the classical 
TGF-β/Smad pathway, and targeting ROCK2 effectively 
attenuated organ fibrosis [53]. These findings have con-
firmed the prominent role of TGF-β non-classical path-
ways in fibrosis, and it is therefore worth exploring their 
potential as therapeutic targets for chronic RILI.

NF- Κ B signaling pathway
The NF-κB pathway, as one of the core pathways of the 
intrinsic immune system, is involved in the regulation 
of a variety of pathophysiological processes including 
inflammation, proliferation and apoptosis [54]. Radiation 
can cause immunogenic cell death (ICD) of tumor cells 
and release DAMPs such as HMGB1, which can bind to 
various surface receptors such as TLR2 and TLR4 and 
activate the NF-κB pathway [55]. Macrophages can also 
secrete HMGB1 after high-dose irradiation, activating 
NF-κB pathway after binding to TLR4, in which acti-
vated NF-κB enters the nucleus and interacts with DNA 
to upregulate the expression of pro-inflammatory factors 
including IL-1β, IL-6 and TNF-α [56].

Currently, targeting the HMGB1/NF-κB pathway has 
shown promising therapeutic effects in relevant studies. 
Garcia et al. explored the possibility of using DAMPs and 
TLR4 as therapeutic targets for RILI respectively [57]. 
Arora achieved therapeutic efficacy for RILI in animal 
models with amphotericin analogues by inhibiting the 
cascade of NF-κB and MAPK pathways [58]. Verma et al. 
utilized Q-3-R, a NF-κB pathway inhibitor, to attenuate 
RILI by reducing the expression of the inflammatory fac-
tors IL-1β, IL-6, IL-18 and TNF-α in mouse lung tissue 
[59]. These findings suggested that targeting DAMPs and 
the NF-κB pathway is important in the treatment of RILI. 
However, given that DAMPs, as a central aspect of ICD, 
promote dendritic cell (DC) maturation and cytotoxic T 
lymphocyte (CTL) infiltration [60], targeting them for 
RILI must be accompanied by careful consideration of 
the possible impact on the anti-tumour effects.

Autophagy-related pathways
Autophagy, as a conserved catabolic process which can 
recycle the excess organelles and proteins through lyso-
some-mediated degradation, plays a critical role in main-
taining cellular homeostasis under a variety of stresses 
and diseases [61]. In the RILI process, Ionizing radiation 
induces ROS-dependent and -independent damage to 
cells, the latter including DNA damage and endoplasmic 
reticulum stress that can activate autophagy [62]. Mild 
and moderate oxidative stress-induced autophagy pro-
motes lysosomal degradation of misfolded proteins in 
fibroblasts and reduces apoptosis in type II alveolar epi-
thelial cells. Severe and prolonged oxidative stress can 
lead to autophagy disorder induced by endoplasmic retic-
ulum stress and further increase intracellular ROS, lyso-
somal membrane damage and apoptosis of lung effector 
cells, promoting chronic inflammation and lung fibrosis 
[63].

The signaling pathways associated with autophagy, 
including AKT/mTOR, MAPK/ ERK1/2, HIF1-α/BNIP3 
pathways, have been reported to participate in pulmo-
nary diseases such as idiopathic pulmonary fibrosis (IPF) 
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and cystic pulmonary fibrosis through induction of epi-
thelial cell damage, autophagic flux block and inhibi-
tion of collagen degradation [64]. For radiation-induced 
lung injury, a previous study revealed that leptin inhib-
its autophagy and promotes EMT in lung epithelial cells 
through activation of AKT/mTOR and that rapamycin 
reverses this process [65]. Li et al. attenuated RILI both 
in vivo and vitro by inhibiting lysosomal degradation of 
GXP4 induced by chaperone-mediated autophagy [66]. 
Furthermore, Wen et al. found that single nucleotide 
polymorphisms (SNPs) in autophagy-related genes are 
associated with the incidence and grade of RILI and have 
potential as predictive targets [67]. Although autoph-
agy-related pathways and genes have showed some 
potential as therapeutic and prognostic targets for RILI, 
relevant studies are still insufficient, and the mechanism 
of autophagy involvement in RILI and the possibility of 
clinical translation need to be further explored.

Key signaling pathways during RILI occurrence and 
development are summarized in Fig.  2, of which the 
classical TGF-β signalling pathway has received exten-
sive attention from clinical and preclinical investigators. 
Given that TGF-β signaling pathway plays a critical role 
in EMT, ECM deposition and CAF formation, target-
ing the TGF-β pathway appears to be a highly promis-
ing strategy for both RILI and anti-tumor therapy [68]. 
However, The success of M7824 in preclinical studies but 

failure in both a phase II clinical trial (NCT02699515) 
for advanced biliary tract cancer and a phase III trial 
(NCT03631706) for non-small cell lung cancer (NSCLC) 
indicates the dilemma of transitioning from animal mod-
els to clinical trials. Interestingly, SHR-1701, a bifunc-
tional protein targeting PD-L1 and TGF-β, was reported 
to exhibit a manageable safety profile and potent antitu-
mor activity in unresectable metastatic colorectal cancer 
[69], implying a significance difference between human 
and animal TGF-β signal pathway. Moreover, since 
TGF-β signal plays an important role from embryonic 
development to the maintenance of immune homeosta-
sis [70], systemic TGF-β deficiency caused by widespread 
inhibition may lead to the disturbance of normal physi-
ological processes [71]. Therefore, it may be worthwhile 
to explore the possibility of targeting the downstream of 
TGF-β signalling, such as integrins [72] and non-coding 
effectors [73]. These findings demonstrate that the tar-
geting of TGF-β signaling pathway in the therapy of RILI 
need to be flexible, specific and accurate.

Prognosis of radiation-induced lung injury
It is important to note that predictive modeling, iden-
tifying at-risk populations, and early intervention are 
important in combating RILI. Previous studies to predict 
RILI continually focused on dose-volume parameters 
[74], anti-tumor treatment modalities [75], pulmonary 

Fig. 2 Key effector cells in radiation-induced lung injury. TGFβ is a key signaling pathway that drives the occurrence of radiation-induced lung injury, 
divided into classical and non classical pathways
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functions [76], comorbid underlying diseases [77] and 
serum cytokines [78]. Our study found that genetic poly-
morphisms are also correlated to the development of 
RILI [79], which may function as predictive targets. As 
the mechanisms of RILI have been studied in depth, 
the selection of predictors has become more pluralistic. 
Furthermore, in order to systematically and individually 
predict the RILI occurrence of patients, the screening 
and integration of multifaceted factors as well as the con-
struction and validation of prognostic models are promi-
nent. In this review, we summarized relevant studies 
on predictive models of RILI in recent years, including 
predictors, patient size, number of centers, radiotherapy 
technology, construction methods, RILI grade and area 
under curve (AUC) of the validation cohort, as shown in 
Table 1.

With the development of artificial intelligence in recent 
years, machine learning and deep learning have been 
increasingly applied to build predictive models, which 
contributes to model accuracy and offers an attempt to 
integrate medicine and industry [90]. However, the pre-
dictive models are poorly applied in clinical practice cur-
rently due to low generalizability, difficulty in objective 
evaluation of RILI [91] and differences in RT technology 
and target delineation. Moreover, with the widespread 
application of immune checkpoint blockade (ICB), the 
combination of ICB and RT increases pulmonary toxicity 

(anti-PD-L1 + RT vs. anti-PD-L1, 13.6% vs. 1.9%) [92], 
which has become a significant resistance to clinical 
oncology. While predictive models for RILI induced by 
radioimmunotherapy remain to be developed. Further-
more, most relevant studies have focused on acute RILI, 
with insufficient attention to the prediction of advanced 
radiation-induced pulmonary fibrosis in clinic.

Pharmacotherapy for radiation-induced lung injury
With the deep exploration of the mechanisms, various 
targets have been attempted for early intervention and 
treatment for RILI. We have summarized the drugs, tar-
gets, therapeutic effects, impact on anti-tumor treatment 
and research types of relevant studies in recent years, 
as shown in Table  2, which indicated that the research 
related to RILI medication has progressed consider-
ably. With the development of organ chip technology, 
RILI models have become various and are not limited 
to the cellular or animal level. For example, Dasgupta et 
al. utilized a microfluidic organ-on-a-chip to imitate the 
human lung more closely and evaluate the effects of lov-
astatin and prednisolone on acute RILI [102]. Moreover, 
in addition to the exploration of novel targets, the inter-
est in the multiple effects of targets in different patho-
physiological processes is also increasing. For example, 
Lan et al. reported a novel combination strategy of RT 
and M7824, a bifunctional fusion protein targeting both 

Table 1 Summary of predictive models for RILI
Predictors Sam-

ple 
size

Center 
number

Radiotherapy 
technology

Modeling method RILI 
grade

AUC Reference

IL-8,CCL-2,MLD, hypertension 131 1 3D conformal RT Generalized linear model ≥ 2 0.863 Yu et al. [78]
Radiomics and dosiomics risk score, ILD, age 314 1 IMRT/VMAT Nomogram ≥ 2 0.855 Zhang et al. [80]
SII, SGA score, PFS, PTV/LV 416 2 3D conformal RT/ 

IMRT/ TOMO
Nomogram ≥ 3 0.852 Wang et al. [81]

Total RD, MLD 965 12 PBT GBM ≥ 2 0.75 Valdes et al. [82]
Dosimetric 3D matrix, clinical 1D matrix 105 1 LinacRT/TOMO RseNet18 architecture ≥ 2 0.91 Sheng et al. [83]
Age, LV, Hb, dose fraction, V10 186 1 SBRT Logistic regression model ≥ 2 0.83 Huang et al. 

[84]
TNM stage, post- RT percentage of CD8 + T 
cell, V15

121 1 IMRT Nomogram ≥ 2 0.621 Zhang et al. [85]

CT matrix, RD matrix 314 1 IMRT/VMAT 3D ResNet architecture ≥ 2 0.65 
and 
0.70

Zhang et al. [86]

V35 and V40 EQD2 333 1 3D conformal RT/ 
IMRT/ VMAT

Logistic regression model ≥ 1 0.71 Puttanawarut et 
al. [74]

Respiratory comorbidity, previous lung radia-
tion, right lung location, MLD, V20

339 2 SBRT Logistic regression model ≥ 2 0.77 Liu et al. [87]

MLD, ITV, V5 − 40, dosiomic features 247 3 SBRT LightGBM ≥ 2 0.846 Adachi et al. 
[88]

Radiomics and dosiomic features 126 1 IMRT Ridge regression 
algorithm

≥ 2 0.88 Li et al. [89]

Abbreviation: CT, computed tomography; EQD2, equivalent dose in the 2 Gy fraction; GBM, gradient boosting machine; Hb, hemoglobin; ILD, interstitial lung 
disease; IMRT, intensity modulated radiation therapy; ITV, internal target volume; LV, lung volume; MLD, mean lung dose; PBT, proton beam therapy; PFS, pulmonary 
fibrosis score; PTV, planning target volume; RD, radiation dose; SBRT, stereotactic body radiation therapy; SGA, subjective global assessment; SII, systemic immune-
inflammation index; TOMO, helical tomotherapy; VMAT, volumetric modulation arc therapy; Vx, the percentage of total lungs volume receiving x Gy
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PD-L1 and TGF-β signaling, to attenuate RILI while 
enhancing anti-tumor effects [16] as the TGF-β signal-
ing plays a critical role in both lung fibrosis and tumor 
immune evasion [106]. Though M7824 has failed in sub-
sequent clinical trials for oncotherapy [107, 108], the 
research has provided a new line of research about miti-
gating RILI while also focusing on various roles of the 
target in other biological processes.

However, a problem similar to that of predictive mod-
els also exists in RILI treatment-related studies, namely 
poor clinical translation. Most of the relevant studies 
are preclinical and only a few are ongoing clinical trials 
(NCT02296281, Pirfenidone vs. Placebo; NCT05637216, 
Losartan). Furthermore, pharmacotherapy for RILI 
should be quested on the base that does not interfere 
with tumor therapy, which are often ignored by relevant 
studies.

Immune checkpoint inhibitors (ICIs) and RILI
In the era of cancer immunotherapy, the combination of 
ICIs and radiotherapy has gained attention for the qual-
ity of translating focal anti-tumour activity into multisite 
effects [109]. Correspondingly, there is an elevated risk of 
pneumonitis, which is not a simple superposition mode 
of RILI and ICI-related pneumonitis (CIP) according to 
the previous study [110], sometimes also referred as anti-
tumor treatment related pneumonitis.

Overall, the incidence of CIP is roughly from 3 to 6% 
[111], of which potential mechanism may be increased 
immune injury mediated by the aggregation of CD4 Th2 
cell population [112], the loss of the inhibitory phenotype 

of Tregs [113], up-regulated circulating cytokines [114] 
and increased preexisting and emerging autoantibod-
ies [115]. Moreover, the combination of CTLA4 inhibi-
tors significantly increased the risk of pneumonitis 
compared to Durvalumab monotherapy (6.7% vs. 2.2%) 
[116], indicating that the mechanisms by which different 
ICIs cause pneumonia may differ. For the combination 
of PD-1/PD-L1 and RT, the senescence-like subtypes of 
fibroblasts, alveolar epithelial cells, B cells, and myeloid 
immune cells expressing Apolipoprotein E may contrib-
ute to RILI [9]. Moreover, PD-1/PD-L1 antibody therapy 
has shaped the inflammatory microenvironment through 
lymphocytes, cytokines, and proteins, which makes it 
favourable for RILI occurrence [117–119]. For the com-
bination of CTLA-4 and RT, the anti-tumour activity 
has been confirmed in clinical and preclinical studies 
[120–123]. However, there are still few studies on the 
mechanism of the effect of the CTLA-4 antibody com-
bined with radiotherapy on RILI, which may be a future 
research direction.

Furthermore, another unique and rare pattern of RILI, 
known as radiation recall pneumonitis (RRP), of which 
specific manifestation is the inflammation located in the 
previously irradiated fields of patients induced by ICIs 
[124]. RRP occurrence may be associated with long-term 
pulmonary mediated by RT, of which alternations include 
lymphocyte infiltration, CD4/CD8 imbalance and accu-
mulation of cytokines such as IL-4 [125], NF-kB [126] 
and CXCR4 [127], causing lung tissues easily stimulated 
by ICIs to initiate inflammation. Additionally, compared 
to anti-PD-L1, stimulation by PD-1 antibodies tends to 

Table 2 Summary of pharmacotherapy for RILI
Drugs Targets Inhibition of 

pneumonia
Inhibition of 
fibrosis

Effects on 
anti-tumor

Research type References

Pulmozyme cGAS/ STING/ NLRP3 pathway Yes Yes Undetected Preclinical study Zhang et al. 
[93]

Pirfenidone M2; TGF-β1/Smad3 pathway Undetected Yes Undetected Preclinical study Ying et al. [94]
MSC-EVs VECs; ATM/P53/P21 pathway Yes Yes Undetected Preclinical study Lei et al. [95]
IR-780 Fibroblasts; Macrophages Yes Yes Positive Preclinical study Luo et al. [96]
2-ME HIF-1α; VECs Undetected Yes Positive Preclinical study Nam et al. [97]
Glibenclamide VECs Yes Yes Undetected Preclinical study Xia et al. [98]
Glucosamine AECs Yes Yes Undetected Preclinical study Lei et al. [99]
Isoflavone NF-κB pathway Yes Undetected Undetected Preclinical study Fountain et al. 

[100]
Thyroid hormone M2; TGF-β1/Smads pathway Undetected Yes Undetected Preclinical study Li et al. [101]
Bintrafusp alfa Fibroblasts; TGF-β1/Smads 

pathway
Undetected Yes Positive Preclinical study Lan et al. [16]

Lovastatin ROS; HMOX1 Yes Undetected Undetected Preclinical study Dasgupta et al. 
[102]

Anisodamine ROS; Nrf2/ARE pathway Yes Undetected Undetected Preclinical study Guo et al. [103]
Antioxidant liposome Macrophages; Neutrophils Yes Yes Undetected Preclinical study Zhou et al. 

[104]
ACT001 NLRP3; ROS Yes Yes Undetected Preclinical study Luo et al. [105]
Abbreviation: AECs, alveolar epithelial cells; EVs, extracellular vesicles; HIF, hypoxia inducible factor; HMOX1, heme oxygenase 1; MSC, mesenchymal stem cell; 
NLRP3, NOD-like receptor thermal protein domain associated protein 3; ROS, reactive oxygen species; TGF-β, transforming growth factor-β
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exhibit a higher risk of PPR [128], indicating that there 
may be differences in the mechanisms by which different 
ICIs contribute to PPR.

Conclusion
In summary, RILI has a broad research perspective and 
its management holds important clinical implications. 
For mechanism exploration, the understanding of target 
cells may be deeper with the help of technologies such as 
sequencing and organ chips. For prognosis, the models 
remain to be developed focusing on different stages and 
treatment combinations and need to enhance the univer-
sality and objectivity for clinical applications. For phar-
macotherapy, it is necessary to promote clinical trials to 
improve the translation of basic research. For the com-
bination with ICIs, it would be interesting to explore the 
mechanisms underlying the effects of ICIs on RILI strati-
fied by the ICI type, especially for anti CLTA-4 therapy.
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