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Abstract
Background This study aimed to identify dosiomic features that have a significant impact on biochemical failure 
(BCF) following low-dose rate (LDR) brachytherapy treatment using Iodine-125 seeds for prostate cancer and to 
provide insights into LDR brachytherapy treatment efficacy using a dosiomic approach.

Methods Between January 2005 and February 2015, 1,205 patients with localized prostate cancer underwent 
Iodine-125 seed implantation without combined external irradiation. A total of 96 patients were selected for this 
study, including 48 with BCF and 48 without BCF. The patients were divided into two cohorts: derivation and 
validation. Dose distribution images (DDs) were calculated from computed tomography (CT) images taken one 
month after implantation. A total of 1,130 dosiomic features, including shape-and-size, histogram, and texture 
features, were extracted from these DDs, their wavelet-transformed images, and Laplacian-of-Gaussian (LoG)-filtered 
images. The features obtained were categorized into three groups: shape-and-size (S), histogram (H), and texture 
(T). The Boruta algorithm was used to eliminate less important features. Two analyses were performed: Analysis A 
performed a multivariate logistic regression analysis using data from the validation cohort to identify significant 
features. Analysis B generated logistic regression models using derivation cohort data. The accuracy of BCF prediction 
was assessed using the validation cohort, with performance measured using the area under the receiver operating 
characteristic curve (AUC).

Results After the feature reduction process, two, two, and four features remained in the S, H, and T feature groups, 
respectively. In analysis A, the multivariate logistic regression identified four dominant features, two from each of the 
S and T groups. In analysis B, the AUC of the logistic regression prediction models using S, H, and all four features were 
0.81, 0.77, and 0.86, respectively.
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Introduction
Low-dose-rate (LDR) brachytherapy for localized pros-
tate cancer has a long history, beginning in 1917 with 
the transperineal implantation of radium needles by Bar-
ringer, and is even today located in the standard treat-
ment option with good clinical performance for low- and 
intermediate-risk localized prostate cancer [1–4]. LDR 
brachytherapy using Iodine-125 seeds showed an out-
come equivalent to that of high-dose-rate [HDR) brachy-
therapy for low-, intermediate-, and selected high-risk 
patients and comparable oncological outcomes with radi-
cal prostatectomy [5–7]. 

Recently, radiomics has been increasingly gaining 
importance in cancer research, as it extracts a large 
number of quantitative imaging features from medical 
images such as computed tomography (CT), magnetic 
resonance imaging (MRI), and positron emission tomog-
raphy (PET), contributing to improving diagnostic, prog-
nostic, and predictive accuracy. Radiomics is expected to 
become a driving force of data-driven decision-making 
in cancer treatment strategies. [8–11] Regarding pros-
tate cancer, CT-based and MR-based radiomics studies 
have demonstrated their potential to classify risk groups 
of the patients and prostate lesion aggressiveness based 
on Gleason score. [12, 13] Dosiomics, or dose-based 
radiomics, is the application of a radiomics strategy to 
dose distributions, extracting quantitative features from 
these dose distributions for use in prognostic prediction 
models [14, 15]. Previous studies have demonstrated that 
dosiomic prediction models outperform those with con-
ventional dose indices. Regarding prostate cancer, the 
previous research indicated that the dosiomic features 
extracted from the clinical target volume of external 
beam radiotherapy were significantly correlated with bio-
chemical failure (BCF) [14]. These reports demonstrated 
its powerful prediction performance; however, its areas 
of application were limited to the dose distribution of 
external beam radiotherapy.

Prior studies have indicated that CT-based postimplant 
dose evaluation is essential and strongly recommended 
[4, 16]. This study aimed to identify dosiomic features 
regarding CT-based dose evaluation at approximately 
30 days postimplantation. These features were assessed 
for their impact on BCF following LDR brachytherapy 
using Iodine-125 seeds and providing insights into LDR 
brachytherapy treatment efficacy through a dosiomic 
approach.

Materials and methods
Patients
Between January 2005 and February 2015, a total of 
1,205 patients with localized prostate cancer underwent 
Iodine-125 seed implantation without combined exter-
nal irradiation. The inclusion criteria of the treatment 
were basically low- and intermediate-risk prostate can-
cer according to the risk classification in the National 
Comprehensive Cancer Network (NCCN) 2019 guide-
lines. The medical records of 133 patients were randomly 
selected and reviewed. There were 85 and 48 patients 
with non-BCF and BCF, respectively. BCF was defined 
according to the Phoenix ASTRO consensus [17, 18]. To 
eliminate the inclination of patients’ clinical background, 
propensity score matching with the nearest matching 
method using age, prostate-specific antigen at diagnosis, 
clinical T-stage, ISUP grade group, and follow-up dura-
tion was applied, and the number of patients with non-
BCF and BCF included in this study were 48 and 48, 
respectively [19]. Details of the patient characteristics are 
shown in Table  1. A total of 96 patients were randomly 
divided into two cohorts: derivation (48) and validation 
(48). Both cohorts included 24 patients with BCF and 24 
patients with non-BCF.

Treatment planning, CT images, and dose distributions
Treatment planning was performed concurrently with 
real-time ultrasound-guided Iodine-125 seed implanta-
tion using the modified peripheral loading method, with 
the intention of achieving a minimum dose of 145 Gy and 
a dose ranging from 195 to 200 Gy covering 90% of the 
prostate volume (D90% = 195–200  Gy) [20]. A postim-
plant CT scan with a 2-mm slice thickness was acquired 
approximately 30 days after implantation, and dose dis-
tributions (DDs) were calculated on the CT scan using 
Variseed software version 9.0.2 (Varian Medical Systems, 
Palo Alto, CA, USA). The field-of-view of CT images var-
ied from 100 to 200 mm2, but the calculation grid size for 
all DDs was uniformly set to 2.0 × 2.0 × 2.0 mm3 due to 
the specification of Variseed software.

Dosiomic feature extraction
Two experienced radiation oncologists contoured a 
region-of-interest (ROI) of the prostate gland using Vari-
seed software, and the contoured ROIs were checked 
by the radiation oncologists against each other. The 
extracted dosiomic features within the ROI of the 

Conclusions Four significant dosiomic features were identified. Notably, three features—elongation, 
Maximum2DDiameterRow, and wavelet-HHL_Skewness—strongly distinguished patients with favorable prognoses 
from others. These findings suggest that dosiomic features from postimplant CT and dose distribution may serve as 
effective factors for evaluating LDR brachytherapy outcomes in patients with prostate cancer.
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prostate gland included 14 shape-and-size features (S), 
18 histogram (first-order) features (H), and 75 texture 
features (T). The S features were the ones that reflect 
the information of the geometrical shape and size of the 
prostate gland. Here, the S features were not excluded in 
this study, although they were not directly related to DDs. 
The H and T features reflect the information of differen-
tial dose-volume histograms and the textural patterns 
of DDs within the ROI, respectively. Dosiomic features 
can be determined not only on the original DDs but also 
on those to which image filters were applied. Image fil-
ters may enhance the characteristics that are difficult to 
find in the original DD images and help find meaning-
ful features [21]. In this study, S, H, and T features were 
extracted from the original DDs, and H and T features 
were extracted from eight types of wavelet-transformed 
and Laplacian of Gaussian (LoG)-filtered DDs (Fig.  1) 
using PyRadiomics Ver. 3.0.1 [22]. Wavelet transform 
was applied by three-dimensional discrete wavelet trans-
form with a total of eight filters, and its frequency com-
ponents were HHH, HHL, HLH, HLL, LHH, LHL, LLH, 
and LLL, where “H” and “L” denote high-pass and low-
pass filters, respectively, and the order of three capital 
letters represents x-, y- and z-direction, respectively [23]. 

The Laplacians of Gaussian filters (sigma = 1.0, 1.5, and 
2.0) were also applied to the original DDs. Consequently, 
1,130 dosiomic feature values were obtained (Fig. 2) and 
normalized using the z-score standardization method 
[24, 25]. 

Study design
This study contained two analyses: (A) searching for 
significant dosiomic features to predict BCF and (B) 
evaluating the significance of dosiomic features found in 
analysis A using BCF/non-BCF prediction with a logistic 
regression model and log-rank test. The workflow of this 
study is shown in Fig. 3.

Feature reduction
Before analysis, a feature-reduction process was imple-
mented for each feature group in the derivation cohort 
using the Boruta algorithm [26]. Boruta is a novel fea-
ture selection algorithm that identifies all potentially 
relevant features using an importance measure in a 
Random Forest classification algorithm. It operates by 
creating shadow features through duplication and ran-
dom shuffling of the original feature set and then train-
ing a random forest classifier using both the original and 
shadow features. The algorithm evaluates the feature’s 
importance by comparing the performance of the origi-
nal features to that of the best-performing shadow fea-
ture. Through an iterative process, features significantly 
outperforming shadow features are deemed “important,” 
while those underperforming are considered “unimport-
ant.” This process continues until all features are classi-
fied or the maximum number of runs is reached. Boruta 
employs statistical tests to validate the feature’s impor-
tance and reduce false positives. The Boruta package run-
ning in Python (boruta_py) was used in the current study 
[27]. 

A total of 1,130 features were extracted from the DDs 
(14 S, 18 H, and 75 T), wavelet-transformed DDs (144 H 
and 600 T), and LoG-filtered DDs (54  H and 225 T). 
These features were sorted into three groups: S, H, and 
T. The three groups were individually processed using 
the Boruta algorithm to eliminate less important features 
(Fig. 3). The remaining features after the Boruta feature-
reduction process were used in analyses A and B.

Analysis A: significant dosiomic features
Multivariate logistic regression analyses were performed 
using the remaining features after Boruta to identify sig-
nificant features in each feature group (S, H, and T) in the 
validation cohort. The p-values were adjusted using the 
Benjamini and Hochberg method [28]. 

Table 1 Patient characteristics
Variables BCF (n=48) Non-BCF 

(n=48)
p 
value(*)

Age at treatment, median 
(range), years

71 (51-82) 69 (54-79) 0.745

Follow-up, median (range), 
months

92.5 (12-203) 92.0 (35-149) 0.602

PSA at diagnosis, median 
(range) ng/mL

7.12 
(3.7-17.3)

7.64 
(2.68-15.2)

0.904

PSA at diagnosis, number (%)
<10 37 (77.1%) 36 (75.0%)
10-20 11 (22.9%) 12 (25.0%)
>20 0 (0.0%) 0 (0.0%)
Clinical stage, number (%) 0.654
T1c 25 (52.1%) 25 (52.1%)
T2a 9 (18.8%) 15 (31.3%)
T2b 14 (29.2%) 7 (14.6%)
T2c 0 (0.0%) 1 (2.1%)
T3a, b, c 0 (0.0%) 0 (0.0%)
Gleason score, number (%) 0.607
3+3 16 (33.3%) 20 (41.7%)
3+4 16 (33.3%) 13 (27.1%)
4+3 15 (31.3%) 13 (27.1%)
4+4 1 (2.1%) 2 (4.2%)
NCCN risk classification, num-
ber (%)

0.481

low 8 (16.7%) 13 (27.1%)
intermediate 39 (81.3%) 33 (68.8%)
high 1 (2.1%) 2 (4.2%)
(*) Mann-Whitney U-test
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Analysis B: biochemical failure prediction using logistic 
regression model
To evaluate the significance of the dosiomic features 
found in Analysis A, logistic regression models were fit-
ted to the remaining features from each of the S, H, and 
T feature groups in the derivation cohort, and the predic-
tion performance of the models was evaluated using data 
from the validation cohort. The prediction performances 
were compared using the area under the curve (AUC) 
values from the receiver operator characteristic (ROC) 
analysis. An evaluation of whether these features could 
distinguish between the BCF and non-BCF groups was 
also performed using the log-rank test.

Statistical analysis
The clinical backgrounds of patients with BCF and non-
BCF were compared using the Mann-Whitney U test, 
performed using R software, version 4.2.2 (R Project 
for Statistical Computing). Propensity score matching 
between patients with BCF and non-BCF, log-rank tests, 

and Kaplan-Meier curves were calculated using the R 
software. Multivariate logistic regression analysis, predic-
tion model generation, and validation were performed 
using the Statsmodels module (version 0.14.0), running 
on Python version 3.11.4.

Results
Feature reduction
The extracted 1,130 features were sorted into three 
groups: S, H, and T. Features in the three groups were 
individually processed using the Boruta algorithm to 
eliminate the less important features. Table  2 lists the 
dosiomic features left after the Boruta feature reduction 
process. The remaining features of each feature group 
were two from S, two from H, and four from T.

Analysis A
Multivariate logistic regression analyses were performed 
using the remaining dosiomic features in each group after 
Boruta feature reduction. Table 2 shows the p-values; the 

Fig. 1 Dose distribution, wavelet transformed sub-bands, and Laplacian of Gaussian-filtered images to be analyzed. The area circled by the red line 
indicates the prostate ROI
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asterisks indicate significant differences. The features that 
showed significant differences were Elongation and Max-
imum2DDiameterRow from the S group and wavelet-
HHL_Skewness and LoG_Sigma_1.5 mm_Energy from 
the H group, but none of the significant features were 
found from the T group. Figure 4 (a)–(d) show boxplots 
of the four features, with the vertical axes in their origi-
nal scales without z-scoring normalization. Table  2 also 
includes the mean values and standard deviation (SD) of 
these features in their original scales.

Analysis B
Three logistic regression models were generated from the 
remaining dosiomic features: two features from S, two 
features from H, and all four features in the derivation 
cohort, and their distinguishing performance was evalu-
ated using the same features in the validation cohort. 
The resulting ROC curves and AUC are shown in Fig. 5 
(a)–(c). The obtained AUC values were 0.81, 0.77, and 
0.86 for the models generated by two from S, two from H, 
and all four features, respectively. The logistic regression 
model that used these four features yielded the highest 
AUC values.

Fig. 3 Dosiomic feature groups and feature reduction using Boruta

 

Fig. 2 Analysis workflow of the study
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The log-rank test was performed to evaluate the accu-
racy of the identified dosiomic features. Figure 6 (a)–(d) 
show the Kaplan-Meier curves of patient groups sepa-
rated by the median of each dosiomic feature found and 
p-values of the log-rank tests. The obtained p-values are 

0.003, 0.7 × 10− 8, 0.004, and 0.1, from Elongation (S), 
Maximum2DDiameterRow (S), wavelet-HHL_Skew-
ness (H) and LoG_Sigma_1.5 mm_Energy (H), respec-
tively. The first three features significantly distinguished 
between the two groups.

Table 2 Remaining dosiomic features after Boruta feature reduction process, and their p-values in analysis A
Name of features and feature groups p-value BCF non-BCF

mean SD mean SD
(S) Shape-and-size feature group
Original_Elongation 0.0079 (*) 0.8368 0.0788 0.8922 0.0659
Original_Maximum2DDiameterRow 0.0237 (*) 39.13 4.537 44.78 5.565
(H) Histogram feature group
Wavelet-HHL_Skewness 0.0022 (*) 1.941 0.4427 2.257 0.2968
LoG-sigma-1.5 mm-3D_Energy 0.0385 (*) 3.374E+13 1.036E+13 3.755E+13 1.451E+13
(T) Texture feature group
Wavelet-LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.2717 1.692 1.463 2.440 1.047
Wavelet-LHL_glcm_MCC 0.0524 0.6852 0.0303 0.7064 0.0228
Wavelet-HLL_gldm_DependenceNonUniformity 0.5785 712.1 282.4 883.9 321.0
Wavelet-HHH_glcm_InverseVariance 0.1200 0.4367 0.0078 0.4316 0.0066
* indicates significant features after the adjustment of the Benjamini and Hochberg method

Fig. 4 Boxplots of significant features found in analysis A and related features with their own scale: (a) original_shape_Maximum2DDiameterRow, (b) 
original_shape_Elongation, (c) wavelet_HHL_histogram_Skewness, (d) log_sigma_1.5mm_3D_histogram_Energy, (e) wavelet_HHL_histogram_Mean, 
(f) original_shape_MeshVolume, (g) number_of_seeds
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Discussion
LDR brachytherapy is a very efficient and cost-effective 
treatment, although it is also a high-complexity proce-
dure according to the complexity index of interventional 
radiotherapy index (COMIRI) classification [29, 30]. The 
results of the present study indicate that dosiomic analy-
sis might be an effective tool for CT-based postimplant 
dose evaluation.

In this study, two significant features from each of 
the S and H groups were found in analysis A, and three 
features—Elongation and Maximum2DDiameterRow 
from the S group and wavelet-HHL_Skewness from the 
H group—were finally identified as well-differentiating 
features.

Features from the S group primarily represented the 
geometrical shape and volume of the treatment target, 
that is, the patient’s prostate, rather than the dose dis-
tribution. Elongation, which is defined as the square 
root of the ratio between the major and second major 
axis lengths of the prostate, characterizes the elliptical 
nature of its shape and indicates how closely it resembles 
a spherical or oval sphere [11]. The mean value and stan-
dard deviation of elongation were 0.8368 ± 0.0788 and 
0.8922 ± 0.0659 for BCF and non-BCF groups, respec-
tively, suggesting that the non-BCF group’s prostates 
were more spherical and a more spheroidal shape may be 
advantageous.

Maximum2DDiameterRow is defined as the largest 
pairwise distance between any two points in the sagittal 
slices; therefore, it directly represents the size of the pros-
tate itself. The mean value and SD of Maximum2DDiam-
eterRow were 39.13 ± 4.537 and 44.78 ± 5.565 for BCF and 
non-BCF groups, respectively. The prostate size in con-
firmed patients with BCF was smaller than that in con-
firmed patients with non-BCF. Not only elongation but 
Maximum2DDiameterRow also strongly distinguished 

the benign prognosis cohort from the others, as shown 
in Fig. 6 (a) and (b). McNeely et al. indicated that patients 
with smaller prostates were at higher risk of having a 
lower D90% (dose covering 90% of the prostate volume) 
than those with larger prostates, which might cause an 
increase in BCF, and it is an assertion that might overlap 
with the results of the current study [31]. 

One significant and one non-significant feature was 
found in the H group: skewness from wavelet-HHL 
images and energy from LoG-filtered images with 
1.5 mm of sigma. Skewness measures the asymmetry of 
a histogram; a higher value indicates that the tail of the 
histogram is inclined toward the side with high values.
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where µ 3 is the 3rd central moment, σ  is standard devi-
ation, Np is the number of voxels in the ROI, X (i) is a 
voxel value of ith voxel in the ROI, and X̄  is an average 
value of X (i) in the ROI. The wavelet-HHL sub-band is 
derived by applying high-pass filtering in the x-y plane 
(axial slices) and low-pass filtering in the z-direction; typ-
ical examples of both patients with BCF and non-BCF are 
shown in Fig.  7. While the mean values of the wavelet-
HHL voxel distributions were similar between the BCF 
and non-BCF groups, as shown in Fig.  4 (e), the differ-
ence in skewness indicated a variation in tail elongation 
in the higher value region. This trend can be inferred as 
follows: the wavelet-HHL sub-band enhances the voxel 
values around the iodine sources, and patients with non-
BCF, who have a larger prostate volume and need more 

Fig. 5 Receiver operating characteristics curves and area-under-the-curve values of biochemical failure prediction by logistic regression models using 
features found in analysis A

 



Page 8 of 11Nakano et al. Radiation Oncology           (2025) 20:56 

iodine sources, have more voxels with higher values in 
wavelet-HHL, as shown in Fig. 4 (f ), (g), and Fig. 7.

Energy is the sum of the squared doses of each voxel, 
that is, a larger irradiated dose causes a higher energy 
value.

 energy =
∑

Np

i=1X (i)2 (2)

The mean value and SD of LoG-1.5 mm_Energy were 
3.374 × 1013 ± 1.036 × 1013 and 3.755 × 1013 ± 1.451 × 1013 
for BCF and non-BCF groups, respectively. This feature is 
understandable because patients with non-BCF showed 

higher energy values. However, this feature did not sepa-
rate the BCF and non-BCF cohorts very well, as shown in 
Fig. 6 (d) (p = 0.1).

Consequently, three features out of four significant fea-
tures effectively distinguished patients with benign prog-
noses from others (p < 0.05). The present study indicated 
that S and H features distinguished patients with benign 
prognosis from others after LDR brachytherapy, in con-
trast to the earlier study by Murakami et al. on dosiomic 
analysis of external beam therapy [14]. 

The limitations of this study include the relatively small 
number of patients involved in the analysis and its retro-
spective nature. Multiple institutional studies with large 

Fig. 6 Kaplan-Meier curves of two patient groups separated by the median of the selected features. The p-values were resulting from the log-rank test
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amounts of patient data may strengthen the findings of 
the present study.

Conclusion
The present study identified two shape-and-size and two 
histogram features as significant prognostic factors using 
a dosiomic analysis approach. Three features, elongation 
and Maximum2DDiameterRow from shape-and-size fea-
ture group and wavelet-HHL_Skewness from histogram 
feature group, out of four strongly distinguished patients 

with benign prognosis from the others. This study dem-
onstrates that dosiomic analysis using postimplant CT 
and dose distribution may serve as effective factors for 
postimplant evaluation of LDR brachytherapy outcomes 
in patients with localized prostate cancer.

Abbreviations
BCF  Biochemical failure
LDR  Low-dose rate
ROI  Region of interest
DD  Dose distribution

Fig. 7 Sample images of wavelet-HHL sub-bands, (a) patient with non-BCR and (b) patient with BCR. Window width (WW) and level (WL) of those images 
were 100,000 / 0 for images in the upper row and 1000 / 40,000 for the ones in the lower row
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CT  Computed tomography
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ROC  Receiver operating characteristic
AUC  Area under the curve
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