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Abstract 

Mathematical modeling has long been a cornerstone of radiotherapy for cancer, guiding treatment prescription, 
planning, and delivery through versatile applications. As we enter the era of medical big data, where the integration 
of molecular, imaging, and clinical data at both the tumor and patient levels could promise more precise 
and personalized cancer treatment, the role of mathematical modeling has become even more critical. This 
comprehensive narrative review aims to summarize the main applications of mathematical modeling in radiotherapy, 
bridging the gap between classical models and the latest advancements. The review covers a wide range 
of applications, including radiobiology, clinical workflows, stereotactic radiosurgery/stereotactic body radiotherapy 
(SRS/SBRT), spatially fractionated radiotherapy (SFRT), FLASH radiotherapy (FLASH-RT), immune-radiotherapy, 
and the emerging concept of radiotherapy digital twins. Each of these areas is explored in depth, with a particular 
focus on how newer trends and innovations are shaping the future of radiation cancer treatment. By examining these 
diverse applications, this review provides a comprehensive overview of the current state of mathematical modeling 
in radiotherapy. It also highlights the growing importance of these models in the context of personalized medicine 
and multi-scale, multi-modal data integration, offering insights into how they can be leveraged to enhance treatment 
precision and patient outcomes. As radiotherapy continues to evolve, the insights gained from this review will help 
guide future research and clinical practice, ensuring that mathematical modeling continues to propel innovations 
in radiation cancer treatment.

Introduction
Radiotherapy is a crucial treatment modality in the fight 
against cancer, used for over half of all cancer patients 
[1]. The application of mathematical modeling has been 
essential in the progression and advancement of radio-
therapy over time. Figure  1 depicts some key examples 
of applying mathematical models in various aspects of 
radiotherapy. For cancer biology, mathematical mod-
eling is used to help to understand the mechanisms of 
tumor growth, invasion, angiogenesis, and metastasis 
and predict treatment response. For radiobiology, mod-
eling has been used to quantify biologically effective dose 
(BED), primarily through the use of the linear-quadratic 
(LQ) model, and has been used to assess risks (i.e., nor-
mal tissue injury) and benefits (i.e., tumor control) of 
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radiotherapy [2, 3]. These are extensively utilized in the 
planning and assessment of radiotherapy.

The LQ model provides a fundamental framework 
for comprehending the impact of radiation on living 
cells, allowing for the prediction and evaluation of the 
reaction of both tumor and normal tissues to different 
radiation dosages [2]. The BED (generally employing 
LQ conversions) serves a quantitative assessment for 
comparing various radiation treatments, accounting for 
factors such as the total dose, fractionation, and length of 
treatment [3].

Moreover, mathematical modeling is essential for 
the development and applications of tumor control 
probability (TCP) and normal tissue complication 
probability (NTCP) models [4, 5]. These models are 
crucial in optimizing treatment strategies by achieving an 
optimal tradeoff between maximizing tumor eradication 
and limiting harm to nearby healthy tissues.

Mathematical models are also extensively used 
throughout the clinical workflow of radiotherapy 
treatment planning. Radiation dose calculation has long 
depended on algorithms of various levels of complexity 
and stochastic beam transport simulation methods 
like convolution/superposition algorithms and Monte 

Carlo-based simulations [6, 7]. Inverse treatment plan 
optimization, a mainstay of modern intensity-modulated 
radiation therapy (IMRT), utilizes dose-informed 
linear and nonlinear objective functions, genetic and 
population level modeling methods, gradient-based 
and stochastic search algorithms such as simulated 
annealing methods, etc., allowing efficient radiotherapy 
dose optimization maximizing dose to targets while 
minimizing dose exposures to normal tissues [8, 9]. 
Techniques in computational mathematics such as 
finite element method and B-spline approximation 
have been the key methods that facilitate deformable 
image registration, which is critical when using various 
diagnostic imaging modalities that need to be fused to 
simulation scans (generally CT-based but also MRI-
based with some commercial systems) [10–12].

With stereotactic body radiation therapy (SBRT) and 
stereotactic radiosurgery (SRS), mathematical modeling 
has increasingly examined the intricate connections 
between dose-fractionation and treatment effectiveness 
in modern radiotherapy methods [13]. Moreover, the 
advent of ultra-high dose rate FLASH radiation, along 
with the growing popularity and sophistication of 
spatially-fractionated radiation therapy (SFRT) have 

Fig. 1 Applications of mathematical modeling in radiation oncology. A list of abbreviations is provided for reference at the end of the article
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created new avenues for research in the field, with 
mathematical models playing a vital role in elucidating 
the mechanisms, examining impacts, and optimizing 
these treatment paradigms [14, 15].

One of the potentially most exciting applications 
of mathematical modeling in radiotherapy is the 
investigation of the intricate interaction between 
radiotherapy and the body’s immune response, 
particularly in the context of immunotherapy [16, 17]. 
This synergy and the intricate considerations required in 
combining and timing radiotherapy with chemotherapy 
and surgery create a complex and exciting terrain in 
which mathematical models can provide essential 
insight. Another equally intriguing area of research is 
the integration of multi-scale, multi-omics data using 
a systems approach to better understand and combat 
cancer [18–20].

To guide readers through the diverse applications of 
mathematical modeling in radiotherapy, this review is 
organized into distinct sections, each addressing a specific 
domain of mathematical modeling and its applications. 
Following a technical overview in "Mathematical 
modeling approaches in radiation oncology," the review 
explores various domains including "Cancer biology 
and classical radiobiology models," "Mathematical 
approaches and models for modern radiotherapy 
treatment workflow," "Mathematical approaches and 
models for temporal and spatial fractionation," "FLASH 
radiotherapy," and "Integrating radiotherapy with 
immunotherapy and immune-oncology." The review 
concludes with sections on "Mathematical modeling 
and digital twins," as well as "Challenges, opportunities, 
and outlook," and "Conclusion”. This structure aims to 
provide a clear progression from foundational concepts 
to cutting-edge innovations, facilitating a comprehensive 
understanding of the field.

This review aims to provide a comprehensive overview 
of the diverse applications of mathematical modeling in 
radiotherapy, placing particular emphasis on cutting-
edge applications and emerging methodologies. 
It seeks to elucidate the current state and future 
potential of radiotherapy, highlighting the critical 
role of mathematical modeling in driving innovations 
and enhancing patient outcomes in radiation cancer 
treatment.

Mathematical modeling approaches in radiation 
oncology
Mathematical modeling approaches used in radiation 
oncology can range from simple arithmetic formu-
las such as the LQ model to differential equations, and 
machine learning methods. The models can be derived 
from first principles, based on fundamental scientific 

laws, empirical fitting, using data-driven approaches to 
match observational outcomes, or a hybrid approach 
that combines two or more methods. Often incorporat-
ing physical laws, differential equations are a powerful 
mathematical modeling tool in radiation oncology to 
effectively describe spatial–temporal dynamics, with fre-
quently used variables of time, space, or size. They can be 
classified into ordinary differential equations (ODE), par-
tial differential equations (PDE), and integro-differential 
equations (IDE). ODEs are equations involving func-
tions and their derivatives with respect to only one vari-
able, for example, describing cell number changes over 
a single variable, time, in cancer cell growth models and 
their response to radiation. PDEs are equations of func-
tions with partial derivatives of one or multiple variables, 
for example, describing interacting variables and spatial 
dimensions in the oxygen-depletion and reoxygenation 
process following FLASH radiation. While every ODE 
is technically a PDE with only one independent variable, 
PDEs are generally used to model phenomena involv-
ing two or more independent variables, such as time and 
space. Interacting variables are frequently modeled with 
systems of ODEs or PDEs. The variables of PDEs can, but 
don’t necessarily have to, stay separated. IDE involves 
both integrals and derivatives of the solution func-
tion, combining both differential and integral calculus, 
for example, calculating radiation dose from modeling 
and integrating the spatial dose transport through tis-
sue. Other differential equations used for mathematical 
modeling are stochastic differential equations, which also 
include terms that describe a stochastic process. SDE are 
often applied to model tumor responses to radiotherapy 
or other radiobiological processes considering both spa-
tial dose distribution and temporal dynamics. Mathemat-
ical models can also be classified into deterministic, with 
predictable outcomes based on fixed rules, or stochas-
tic, which incorporates randomness and variability. One 
widely-known example is the two types of normal tissue 
radiation effects, where conditions like cataract forma-
tion are deterministic with a dose threshold, and condi-
tions like radiation-caused malignancies are stochastic 
without a dose threshold [21]. In addition to continuous 
differential equations, the models can be discrete, dealing 
with distinct and separate values, where each cell is con-
sidered as a discrete element and a set of rules regulating 
cellular activities and interactions, also known as cell-
based models, agent-based models, or individual-based 
models, allowing exploration of single-cell responses to 
treatment that lead to observable dynamics at the tumor 
scale. Table 1 lists these main categories of mathematical 
modeling approaches and example applications in radia-
tion oncology. In each application, hybrid approaches 
may also be used combining the strengths of different 
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methods. Besides conventional mathematical modeling 
approaches, machine learning is also an increasingly 
popular approach to leverage classical models with large 
datasets for pattern recognition and making predic-
tions [22]. Mathematics is at the core of machine learn-
ing methods, as those methods rely on mathematical 
algorithms to identify patterns and relationships in data, 
usually optimize a mathematical objective, and leverage 
mathematical methods such as linear algebra, calculus, 
and probability.

Cancer biology and classical radiobiology models
Mathematical modeling has been employed to offer 
valuable insights into cancer biology, especially the 
complex dynamics of tumor growth, invasion, and 
metastasis. Over the past century, these models have 
evolved from simple theoretical frameworks to highly 
sophisticated approaches, reflecting advances in tumor 
biology and computational capabilities. To describe 
how cancer cells proliferate over time, models from the 
simple exponential growth model to more complex 
models accounting for other biological factors have been 
developed. The exponential model, introduced in the 
early twentieth century, assumes the tumor grows at a 
constant rate proportional to its current size and has no 
asymptotical value, i.e., no carrying capacity. In reality, 
factors like nutrient availability and accessibility and cell 
death inhibit infinite growth. Two of the most frequently 
used sigmoidal models, the logistic growth model and 
the Gompertz model, incorporate these growth-limiting 
factors, such as applying a carrying capacity factor [33, 
34]. Such models are also often employed to simulate the 
interplay between tumor and normal cells [35, 36].

In the mid-twentieth century, spatial–temporal mod-
eling approaches emerged to better understand tumor 
invasion and spread into surrounding tissues. To model 
how cancer cells spread from the primary tumor into 

surrounding healthy tissues, PDEs are often used to cap-
ture the spatial and temporal dynamics of cell movement, 
degradation of the extracellular matrix (ECM), and inter-
actions with the microenvironment [37]. Among many 
examples, a hybrid model is developed to simulate can-
cer progression, within this framework. Reaction–dif-
fusion models are used to model nutrient transport, cell 
proliferation, and cell-ECM mechanical interactions are 
modeled using PDEs as a viscous fluid through a porous 
medium, a combined continuum-discrete model is used 
for angiogenesis, the level set method is used to capture 
the topological changes like tumor splitting, and finite-
element models are applied to simulate vascular endothe-
lial growth factor (VEGF)-receptor interactions and 
vessel network formation [38]. The even more complex 
bioprocess of cancer metastasis has leveraged multi-scale 
mathematical modeling that encompasses the cellular, 
tissue, and systemic levels. In the early twenty-first cen-
tury, multi-scale mathematical models were developed 
to address more complex bioprocesses such as cancer 
metastasis, encompassing the cellular, tissue, and sys-
temic levels. These frameworks of tumor biology are fur-
ther integrated with the effects of radiation for modeling 
the complex system of radiobiology and radiotherapy 
applications, as illustrated in Fig. 2.

Radiation-based cell killing is the basis for radio-
therapy, which is triggered largely by radiation-induced 
double-strand DNA breaks. Radiation effects are classi-
cally described with 5 R’s of radiobiology: “Radiosensitiv-
ity” that different cells exhibit a wide range of sensitivity 
to radiation; “Repair” of radiation-induced DNA dam-
age which may lead to cell cycle arrest, recovery from 
sublethal injuries, or death; “Reoxygenation” in which 
vascular changes within the treated tumor leads to 
increased blood flow that reverses hypoxia, increasing 
radiosensitivity; “Reassortment/Redistribution” in which 
the differential survival of cells in cell cycle phases of 

Table 1 Different types of mathematical modeling approaches and example applications in radiation oncology

A list of abbreviations is provided for reference at the end of the article

Classification Method Example application

Type of differential equations ODE Gompertzian growth model integrated with the LQ model for the dynamics of tumor growth 
and response to radiation [23]

PDE Oxygen depletion and reoxygenation for FLASH [24]

IDE Dose calculation utilizing the Boltzmann transport Eq. (25)

SDE Tumor responses to RT or other radiobiological processes considering dynamics effects [26, 27]

Uncertainty Deterministic Deterministic TCP models [28, 29]

Stochastic Markov chains to model the random nature of cellular responses to radiation in TCP [29, 30]

Type of variables Continuous LQ model in radiobiology

Discrete Agent-based models for tissue mechanics [31] or multiscale diffuse interface models for 3D 
non-linear tumor growth [32]
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varying radiosensitivity get redistributed in the cell cycle; 
“Repopulation” with which survived tumor and healthy 
cells regenerate between dose fractions [39, 40]. Math-
ematical modeling has played a central role in describ-
ing the relationship between radiation dose and cell kill/
survival and in simplifying the intricate interplays of the 
5 R’s. The original 4Rs, Repair, Reassortment/Redistribu-
tion, Repopulation, and Reoxygenation, were introduced 
in the mid-twentieth century to describe key biological 
mechanisms that influence tissue response to fraction-
ated radiotherapy, serving as a foundational framework 
for optimizing radiotherapy efficacy. The fifth R, Radio-
sensitivity, was introduced later in the 1980s based on 
experimental findings that highlighted significant differ-
ences in the inherent radiosensitivity of tumor cell lines, 
further refining our understanding of this intrinsic factor 
which plays a critical role in determining treatment out-
comes (Fig. 3).

Although some alternative models have been proposed, 
the prevailing framework in describing cell survival in 
response to radiation remains the LQ model (Eq.  1). 
This model characterizes the cell survival fraction after 
receiving a certain dose by an exponential decay with a 
linear term, α, and a quadratic term, β. The linear term 
represents the initial damage caused by radiation that 
is directly proportional to the dose, and the quadratic 
term represents double-strand DNA breaks caused 

by combining two sublethal damage events where the 
damage is proportional to the square of the  dose. The 
LQ model was developed in the mid-twentieth century 
to provide a mathematical framework for understanding 
the dose-dependent effects of radiation on cell survival. 
It remains widely used due to its ability to capture the 
effects of dose fractionation and its simplicity, which 
allows empirical fitting to experimental and clinical data. 
The α/β ratio is determined through experimental and 
clinical studies by fitting survival curves of irradiated 
tissues or cells to the LQ model. For example, in  vitro 
studies use cultured cell lines irradiated at different dose 
fractions to analyze the survival-dose relationship and 
characterize α and β parameters, while in vivo or clinical 
studies analyze animal or patient radiation outcomes to 
refine α and β estimates for specific tumors and normal 
tissues. As the classical radiobiology model, the LQ model 
serves as the mathematical foundation of radiotherapy, 
and the empirically fitted α/β ratio is widely used to 
describe the radiosensitivity of different cells or tissues. 
The LQ model also effectively illustrates the effects of 
dose fractionation and how it impacts tumor control and 
normal tissue toxicity [41]. Based on the LQ model and 
the α/β ratio, the BED calculation allows the comparison 
of varying fractionation schemes by normalizing their 
biological effects (Eq.  2). On the other hand, the LQ 
model does not consider some of the other R’s in 

Fig. 2 Radiation-cell interactions and mathematical modeling. Blue texts denote radiotherapy techniques, green texts denote mathematical 
models, and red texts denote biological elements and states. A list of abbreviations is provided for reference at the end of the article
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radiobiology such as reoxygenation and redistribution, 
and is simplistic in the modeling of damages and repairs. 
While the LQ has been used across various dose-
fractionation schedules, with very high fractional disease 
(such as over 8–10 Gy/fraction for SRS or SBRT), or for 
higher dose rates, the radiobiology is different than with 
conventionally fractionated radiation, and the utility of 
the LQ model has been questioned and debated [42–44]. 
At higher fractional doses or higher dose rates, cellular 
DNA repair pathways may become overwhelmed, leading 
to increased DNA damage accumulation, and the tumor 
microenvironment may get modulated, potentially 
altering enhancing immune system activation. High 
dose fractions and high dose rates therefore can lead 
to increased direct cell death and may induce vascular 
damage within tumors. Modifications on the LQ models 
or alternative models have been developed for these 
cases which will be discussed in further detail in the next 
section. Table  2 summarizes a list of equations that are 
discussed in this section for easy reference.

LQ model

(1)S(D) = e−
(

αD+βD2
)

where S(D)  is the cell surviving fraction after irradiated 
with a dose D, α is the linear component of cell killing per 
unit dose, and β is the quadratic component of cell killing 
per unit dose squared.

BED

where n is the number of fractions, and d is the dose per 
fraction.

While the LQ model functions at the cell level. TCP 
and NTCP are employed at the tumor and tissue level to 
quantify the probabilities of tumor control and normal tis-
sue toxicity based on the received dose. These models are 
usually empirically fitted from clinical and experimental 
data, often combined with some theoretical components. 
For TCP (Eqs.  3a and 3b), the logistic (sigmoidal) model 
and Poisson model are among the most widely utilized 
approaches in research and sometimes made available in 
commercial treatment planning and inverse optimization 
software [45, 46]. For NTCP (Eqs.  4a and 4b), prevailing 
models include the Lyman-Kutcher-Burman (LKB) model, 
the critical volume (CV) model, etc. [47, 48]. Some of these 

(2)BED = nd

(

1+
d
α
β

)

Fig. 3 Complex interplays between radiation and the immune system
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NTCP models have also been made available in commer-
cial treatment planning systems for biological plan optimi-
zation. These models are also often used to examine dose 
toxicity relationships and have yielded normal tissue dose 
constraints widely adopted in clinical practice [49, 50]. 
With concerns raised about model limitations on non-uni-
form dose distributions, models continue to be enhanced 
to address involved complexities and large pooled data are 
used to fit these models [47, 49, 51]. To account for the spa-
tial distribution of dose on normal tissue, the equivalent 
uniform dose (EUD) model (Eq. 5) is often used [52].

Logistic TCP model

where D is the delivered radiation dose, D50 is dose for a 
50% probability of tumor control, and k is the slope of the 
sigmoidal curve at D50.

Poisson TCP model

where N is the initial number of clonogenic cells and S(D) 
is cell survival fraction after dose D.

LKB NTCP model (simplified)

where t is the normalized dose difference and u is a 
dummy variable used in the integration to calculate the 
cumulative normal distribution.

CV NTCP model

(3a)TCP(D) =
1

1+ e−
D−D50

k

(3b)TCP (D) = e−N×S(D)

(4a)NTCP =
1

√
2π

t
∫

−∞
e−

u2

2 du

(4b)NTCP =
{

0, v < vcrit
1, v ≥ vcrit

where v is the fractional volume of the organ receiving 
a dose above the threshold dose, and vcrit is the critical 
volume.

EUD model

where a is a tissue-specific parameter for dose–response 
relationship, and vi is the fractional volume receiving 
dose Di.

In addition to the classical LQ model, other physical 
or mathematical models were also proposed, especially 
in earlier times, to describe the radiation effects on 
cells. Some notable ones include the target theory 
models such as the single-hit model that emerged in 
the 1920s (Eq. 6), the multi-target, single-hit model that 
emerged in the 1950s (Eq. 7), and the lethal-potentially 
lethal model that emerged in the 1970s (Eq.  8) etc. 
[53–56]. The single-hit model was the earliest attempt 
to describe cell survival to radiation, focusing on the 
probabilistic nature of radiation interactions. The 
multi-target, single-hit model was later introduced 
to account for cell repairs and describe the “shoulder” 
observed in the cell survival curve. The LPL was a 
further development later that differentiate between 
immediately lethal damage and damage that could 
become lethal if not repaired, highlighting the dynamic 
nature of post-irradiation DNA repairs.

Single hit model

where S(D) is the survival fraction given dose D, and k 
is a constant representing the sensitivity of the target to 
radiation.

Multi-target, single-hit model

(5)EUD =

(

∑

i

viD
a
i

)
1
a

(6)S(D) = e−kD

Table 2 A list of the discussed equations/radiobiology models for easy reference

Equation Name Description

1 Linear-quadratic (LQ) model Classical cell survival model to model cell survival as a function of radiation dose

2 Biologically effective dose (BED) Applies the LQ model for dose and fractionation effects

3 Tumor control probability (TCP) Predicts tumor eradication likelihood

4 Normal tissue complication probability (NTCP) Estimates radiation-induced normal tissue toxicity risk

5 Equivalent uniform dose (EUD) Converts non-uniform dose to an equivalent uniform dose

6 Single-hit model Alternate cell survival model that assumes cell death from a single lethal event

7 Multi-target, single-hit model Alternate cell survival model that accounts for multiple sublethal targets per cell

8 Lethal-potentially lethal (LPL) model Alternate cell survival model that includes repairable sublethal and lethal damage

9 Oxygen enhancement ratio (OER) Quantifies oxygen’s impact on radiation sensitivity

10 Relative biological effectiveness (RBE) Compares effectiveness of different radiation types



Page 8 of 19Zheng et al. Radiation Oncology           (2025) 20:49 

where D is the dose, D0 is the dose at which there is an 
average of one lethal hit per target, and n is the number 
of targets.

Lethal-potentially lethal model

where γ represents higher-order terms accounting for 
potentially lethal damage repair dynamics.

Radiation effects on cell survival are also affected 
by other factors. For example, oxygen enhances the 
radiation damage due to free radical formation and 
fixation of radiation damage not allowing it for easy 
repair. Therefore, the radiation dose required to cause the 
same amount of cell kill for cells in a hypoxic condition 
is higher than in a well-oxygenated condition. Oxygen-
enhancement ratio (OER), the ratio of the radiation 
dose required to achieve the same cell killing in anoxic 
conditions to the dose required in oxygenated conditions, 
is used to describe this effect (Eq.  9) [57]. Different 
cell types have different OERs, ranging around 2.5 to 3 
for mammalian cells [58], with lower OER values for 
radiation with high linear energy transfer (LET) or at low 
doses [57, 59].

OER

Similarly, relative biological effectiveness (RBE) 
is used to describe the biological effectiveness of 
different types of ionizing radiation relative to reference 
radiation modality (x-rays) (Eq.  10) [60]. This biological 
effectiveness depends on the LET of the radiation [61]. 
Higher LET radiation such as proton and other charged 
particles has a higher RBE than low LET radiation such 
as x-rays.

RBE

OER addresses the radiobiological impact of oxygen 
conditions and is often used for hypoxia and FLASH 
RT modeling. RBE describes the biological effective-
ness of different radiation modalities or types relative 
to standard x-rays, and is often used in particle therapy 
modeling. Both these models provide insights into bio-
logical responses to radiation under specific conditions 

(7)S(D) = 1−
(

1− e
− D

D0

)n

(8)S(D) = e
{

−
(

αD+βD2+γD3
)}

(9)OER =
Dose in hypoxic conditions

Dose in oxygenated conditions

(10)
RBE =

Dose of standard
(

x − ray
)

radiation needed to produce the same biologic effect

Dose of a second radiation needed to produce the same biologic effect

and complement other models like TCP, NTCP, and 
EUD by addressing unique aspects of radiobiological 
interactions.

Mathematical approaches and models for modern 
radiotherapy treatment workflow
Beyond classical radiobiology, mathematics plays a 
pivotal role in various aspects of modern radiotherapy. 
In this section, we briefly outline notable and commonly 
used mathematical approaches within the general 
radiotherapy treatment workflow. In subsequent 
sections, we delve deeper into important and emerging 
radiotherapy applications that leverage advanced 
mathematical modeling techniques. The mathematical 
models referenced in this section primarily pertain to 
computational imaging and radiotherapy processes.

Modern radiotherapy utilizes individual patients’ 
volumetric images to develop customized treatment 
plans. Mathematical techniques and computational 
tools have long been implemented in facilitating 
the radiotherapy treatment workflow. For radiation 
dose computation, the Monte Carlo simulation is a 
fundamental stochastic method for beam transport 
simulation and remains the gold standard [62]. Other 
dose calculation algorithms with varying levels of 
accuracy and simplifications have also been adopted in 
clinical treatment planning systems, such as pencil beam, 
convolution superposition, collapsed cone convolution, 
and analytical anisotropic algorithm [63–67]. For inverse 
plan optimization, methods like linear programming, 
multi-criteria Pareto optimization, greedy gradient 
search, and simulated annealing are widely applied, 
and machine learning methods are employed to devise 
processes that automate treatment planning with greatly 
reduced reliance on human interactions [68–75].

Modern radiation oncology relies upon 3-dimensional 
volumetric images such as computed tomography 
(CT), magnetic resonance imaging (MRI), and 
positron emission tomography (PET). Mathematical 
methods, such as the  Fourier transform and various 

mathematical filtering algorithms, are fundamental to 
image generation, processing, and enhancement [76–
79]. Target (the tumor or area intended for radiation 
treatment) and critical organ (healthy tissues near the 
target that must be protected to minimize radiation-
induced damage) delineation is an important step of 
radiotherapy treatment planning, and multi-model 
images such as CT, MRI, and PET are usually used 
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to optimize the visualization of these structures. 
Mathematical approaches are an integral part of image 
registration and involve modeling tissue deformations 
to ensure accurate alignment of anatomical structures 
across imaging modalities, such as finite element 
methods and B-spline methods used in deformable image 
registration [10, 11]. In the meantime, routine clinical 
practice is greatly benefiting from numerous works that 
implement mathematical or machine learning models for 
automating image segmentation, such as convolutional 
neural networks (CNNs) that are widely used for image 
autosegmentation by learning features directly from 
imaging datasets [80]. Currently, such machine learning 
and hybrid models have largely outperformed atlas-
based methods on autosegmentation and are widely 
used in commercial and in-house clinical solutions for 
automated segmentation and RT treatment planning. 
For radiotherapy delivery, mathematical modeling has 
also been critical in ensuring or improving delivery 
accuracy, such as for respiratory motion prediction 
and management during the treatment [81]. Most 
commercial respiratory gating systems integrate such 
predictive filters though their utility is currently more 
sporadic in the clinic due to imperfect robustness against 
breathing irregularities. On another modern RT frontier, 
image-based tissue-scale models leverage quantitative 
imaging modalities, such as MRI and PET, to optimize 
radiotherapy by integrating biological insights with 
patient-specific data. Hormuth et  al. utilized dynamic 
contrast-enhanced (DCE)- and diffusion-weighted 
(DW)-MRI to predict tumor and vascular responses 
to radiotherapy in glioma models, achieving spatially 
accurate forecasts of treatment outcomes [82–84] . 
Rockne et  al. incorporated hypoxia-informed resistance 
using 18F-FMISO PET in a computational model 
for glioblastoma, improving the accuracy of tumor 
radiosensitivity predictions [85]. Lipková et al. combined 
FET-PET and MRI in a Bayesian framework to estimate 
tumor densities and guide personalized dose-escalation 
strategies while minimizing radiation toxicity. These 
approaches demonstrate the potential of image-driven 
models to refine radiotherapy by enabling adaptive, 
patient-specific treatments [86, 87].

Mathematical approaches and models for temporal 
and spatial fractionation
Radiotherapy dose fractionation favors normal tissue 
repairs, for the reason that tumors with a high α/β 
ratio (e.g. 10  Gy) tend to be early-responding, i.e. 
show radiation damage soon after exposure due to 
rapid cell turnover, while most organs (excluding skin) 
and normal tissues (excluding mucosal surfaces and 
marrow) with a low α/β ratio (e.g. 2–3  Gy) tend to be 

late-responding, i.e. show radiation damage long after 
exposure due to slow cell turnover. Models for early-
responding tissues usually prioritize total dose effects 
and acute cell killing, such as using the LQ model with 
higher α/β ratios, and those for late-responding tissues 
tend to emphasize repair kinetics and long-term damage 
accumulation, incorporating lower α/β ratios and repair-
misrepair parameters. Hypofractionation, radiotherapy 
delivered in one or limited numbers of fractions of large 
fractional doses, has gained traction in radiotherapy for 
cancer in recent years. In addition to enhancing patient 
convenience and cost-effectiveness, hypofractionation 
can be more effective in terms of cancer control in 
some circumstances. This greater efficacy may reflect 
differences in the  radiobiology of hypofractionation. 
The effectiveness of dose fractionation is generally well 
modeled by classical models such as LQ model and BED 
calculation. However, as the fractional dose gets above a 
certain threshold (8-10  Gy), such as in the situations of 
SRS/SBRT, it becomes controversial how accurately these 
classical models could model the dose–effect and if they 
would overestimate cell survival. Biologically, such high 
fractional doses may overwhelm or saturate the DNA 
repair mechanisms, damage vasculature, and trigger 
immune effects, thereby violating the LQ radiation cell 
survival model. The effect of hypoxia may be lessened 
with hypofractionation. Also, some cancers (such as 
prostate cancer) behave more like late-responding tissue 
than early-responding tissue. Modifications to classical 
models and new model development are therefore 
necessitated to more accurately capture cell response to 
hypofractionated treatments. For example, an additional 
linear term that becomes dominant at higher doses is 
introduced in the linear-quadratic-linear (LQL) model 
which transitions the cell killing from quadratic to 
linear surpassing a crossover dose threshold [88]. This 
modification accounts for the saturation of sublethal 
damage repair mechanisms at high dose levels, and 
therefore allows the LQL model to better represent the 
biological response in scenarios involving high-dose 
fractions, such as SBRT. The universal survival curve 
(USC) model is another model that uses LQ model for 
lower doses and a linear model of two components for 
higher doses, combining the strengths of the LQ and 
multitarget models [89]. The transition in the USC model 
ensures the model’s applicability across a wide dose 
range, improving its accuracy in describing cell survival 
in hypofractionation regimens.

Watanabe et  al. developed a simple mathematical 
model to simulate tumor growth and response to a 
single high-dose fraction of irradiation, using key 
biological parameters such as the radiation sensitivity 
indicator α from the LQ model and a new vascular 
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growth retardation factor θ to predict post-treatment 
tumor volume changes in both experimental and 
clinical settings [90]. Matsuya et  al. compared the LQ 
model and two other microdosimetric-kinetic models 
(MKM) using a Markov chain Monte Carlo simulation, 
and found that damage repair during irradiation plays 
a key role and models without a repair factor during a 
short dose-delivery time may overestimate cell killing in 
fractionated radiotherapy [91]. Nakano et al. introduced 
a mathematical model combining ODE and MKM to 
predict the tumor cell lethal effect in non-small cell 
lung cancer (NSCLC) during SBRT and validated their 
approach with in vitro experimental data [92]. Tariq et al. 
developed a model to describe tumor volume dynamics 
during SBRT, focusing on ODE models rather than 
more complex PDE models [93]. This decision balanced 
model accuracy with practical clinical applicability, as the 
available clinical data did not include spatial distribution 
information. They explored one-population and two-
population tumor growth models, employing the Akaike 
information criterion to identify the most appropriate 
model by balancing accuracy and complexity. The study 
concluded that the two-population exponential growth 
model provided the best trade-off, making it a promising 
candidate for future clinical applications.

Mathematical modeling has been used to examine 
conventional, hypo-, and hyper-temporally-fractionated 
and spatially fractionated radiotherapy, providing 
support for the clinical and preclinical evidence of their 
effectiveness. Table 3 lists some examples of studies that 
apply mathematical modeling to study these effects. 
Mathematical models are continually evolving in tackling 
the complexities of dose distribution and biological 
response in temporally and spatially fractioned RT. 
Although the LQ model remains widely used for its 
simplicity and applicability, there is growing interest 
in incorporating more sophisticated models that 
account for factors such as the fractional dose effects, 
hypoxia, and cell heterogeneity. Ongoing research aims 
to refine the mathematical modeling techniques to 
optimize treatment plans, improve TCP, and personalize 
treatment schedules based on patient-specific factors and 
comprehensive radiobiological insights [42, 88, 94, 95].

Mathematical approaches and models for FLASH 
radiotherapy: the ultra‑high dose rate
FLASH radiotherapy (FLASH-RT) is an emerging 
radiotherapy concept with potential to deliver therapeutic 
doses of radiation with minimal side effects [105–107]. 
Characterized as an often-single-dose radiotherapy of 
ultra-high dose rate, > 40  Gy/s as opposed to the 0.01–
0.4  Gy/s in conventional radiotherapy (CONV-RT), 
FLASH-RT has been shown in many preclinical studies 

to have reduced risks of normal tissue damages and 
hence improved healthy tissue sparing compared with 
CONV-RT [105, 108–110]. The FLASH effect is not 
a new concept, first described in the late 1950’s with 
reduced radiosensitivity of bacteria when exposed to 
ultra-high dose rate radiation in an anaerobic condition 
[111]. The newly ignited interests were built on a series 
of in  vivo animal experiments in which FLASH-RT 
substantially reduced the healthy tissue toxicity while 
maintaining tumor control. Currently, FLASH-RT is 
actively researched on using photon and particle therapy 
systems such as proton, electron, and heavy ions, with 
pilot human clinical trials currently underway such as the 
FAST-01 trial [109, 112–116].

Despite numerous in vivo and in vitro demonstrations 
of the FLASH effect, the mechanisms behind the 
FLASH-RT are still largely controversial [117–120]. There 
are multiple popular theories. The most widely-accepted 
is likely the oxygen depletion theory, which can be traced 
back to the original FLASH effect paper [111], in which 
FLASH-RT is believed to create a transient hypoxic state 
in normal tissues through oxygen depletion, causing the 
tissues to become more radioresistant and hence better 
protected against the radiation, versus tumor tissues that 
are already in a baseline hypoxic state where additional 
effects are not expected [121–124]. Extensions of this 
theory include the reoxygenation dynamics in tumor and 
tissue environments with varying levels of oxygenation, 
the intrinsically different levels and responses to reactive 
oxygen species (ROS) between tumor and normal 
tissues, etc. Another popular theory is based on different 
tumor and normal tissue immunological responses 
to FLASH-RT, including their different immunogenic 
characteristics, the immune microenvironment, pro-
inflammatory and anti-inflammatory responses, and 
the immune system’s reaction to ionizing radiation 
[124–127]. A third main theory relates to DNA damages 
and responses to these damages between tumor and 
normal tissues under the FLASH-RT vs. CONV-RT 
conditions [128–131]. In addition, there are many other 
speculations based on the unique temporal and spatial 
dose distribution of FLASH-RT, as well as its damages 
to the vasculature, etc.[117–119]. Current FLASH-RT 
studies have not conformed the Bragg peak to tumor 
volume and have not verified dosimetry, which elicits 
hesitation in its clinical use [120]. Nevertheless, there is 
still much unknown and many controversies regarding 
the exact mechanism of the FLASH effect. Therefore, 
mathematical modeling provides a useful method 
to study possible physical, chemical, and biological 
interactions to gain a  deeper understanding and insight 
into this complex system.
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Based on the oxygen depletion theory that FLASH-RT 
leads to transient hypoxia in normal tissue cells, Zhou 
et  al. employed dimensional analysis to estimate the 
minimum dose rate required for achieving the FLASH 
effect [24]. In this work, they divide the FLASH irradia-
tion process by ultra-short radiation pulses into three 
phases: radiation-induced species production, oxygen 
molecule depletion, and reoxygenation through diffusion. 
Using differential equations describing these processes 
and applying dimensional analysis, they suggest that the 
estimated minimum dose rate for pulsed FLASH-RT 
is proportional to the product of the oxygen diffusion 
coefficient and intracellular oxygen concentration and 
inversely proportional to the square of the oxygen diffu-
sion distance and the reduction of intracellular oxygen 
per unit radiation dose. Their estimation of the minimal 
required dose rate aligns with the order of magnitude 
of dose rates observed in previous FLASH radiotherapy 
experiments, providing a theoretical framework and pre-
liminary estimates for FLASH-RT.

In another work, Abolfath et al. studied the molecular 
dynamics in FLASH-RT using Monte Carlo simulation 
of physical reactions including ionizations, electronic 
and vibrational excitations, and ROS generation and 
reactions [121. Applying analytic and numerical methods 
for a system of dimensionless differential equations 
with analytical and numerical solutions, their time-
dependent molecular dynamics simulations establish 
the time scale of oxygen depletion in FLASH-RT to be 
femto- to nanoseconds after irradiation, and suggest that 
the FLASH effect takes place in physoxic normal tissues 
(4–5% oxygen) compared to the hypoxic tumor tissues, 
but not at higher oxygen levels above 10–15% oxygen.

Hu et  al. applied PDE-based mathematical modeling 
on oxygen distribution in tissue based on the oxygen 
consumption rate of tissue and the distance between 
capillaries [122]. Their findings suggest a plateau effect 
that once above a certain threshold, further increasing 
the dose rate will not significantly alter the oxygen 
concentration change. They also suggest that based on 
the oxygen depletion theory alone the model results 
contradict the observed FLASH effect in some settings, 
especially in brain tissue, necessitating alternative 
hypotheses to complement oxygen depletion to fully 
elucidate the FLASH effect.

Rothwell et al. also applied mathematical models simi-
lar to the others based on oxygen depletion to study the 
FLASH effect, focusing on identifying the conditions 
under which radiation may induce sufficient deple-
tion of oxygen to cause a diffusion-limited hypoxic 
cellular response [123]. They use a typical reaction–dif-
fusion model in a one-dimensional slab geometry, com-
bining Fickian diffusion with terms for metabolic and 

radiation-induced oxygen consumption. The radiation-
induced consumption of oxygen is modeled using a 
two-stage lumped reaction, reflecting the physicochemi-
cal stages of radiolysis of water. With the model, they 
extensively analyzed how different parameters, such as 
dose rate, metabolic reaction rate, and oxygen concen-
tration etc., influence the FLASH effect. The simulations 
show how these parameters interact and their cumulative 
impact on oxygen depletion and reoxygenation in cells.

Zhu et  al. also used Monte Carlo simulations and 
mathematical modeling to investigate the impact of 
radiolytic oxygen depletion (ROD) on cellular responses 
to FLASH-RT [132]. Monte Carlo simulations were 
used to model the ROD process, study the interactions 
between radiation and biological tissues, and calculate 
oxygen depletion and DNA damage. Oxygen distribution 
and cellular responses were analyzed using numerical 
simulations. Similarly, they suggest that the FLASH effect 
due to ROD happens only in hypoxic cells with lower 
oxygen levels  (pO2 < 30–40  mmHg). They also conclude 
that single pulse radiation and multi-pulse radiation with 
shorter pulse intervals are better at achieving the FLASH 
effect without suffering from oxygen tension recovery. 
In addition, they suggest low LET source particles are 
preferred for FLASH-RT.

Similarly, Song et al. employed analytical mathematics 
to model the effects of varying LET on the FLASH effect 
based on oxygen depletion [133]. Integrating the oxygen 
depletion framework and the oxygen enhancement ratio 
values according to LET, they suggest that the FLASH 
effect is maximized and observable at intermediate 
oxygen level (10–100 mmHg), and low LET radiation is 
more effective at inducing the FLASH effect.

Mathematical modeling with PDE, ODE and other 
approaches, including molecular dynamics and Monte 
Carlo simulations, has provided insights into the dose 
rates required for FLASH-RT and its effects on tissue 
oxygenation. Still, more research is yet ongoing and 
needed to fully understand the FLASH effect and refine 
its clinical application.

Mathematical approaches and models 
for integrating radiotherapy with immunotherapy 
and immune‑oncology
While radiotherapy is primarily a local therapy, the 
circulatory system can allow for possible systemic effects 
of radiation. Radiation can have both a stimulatory and 
a suppressive effect on the immune system. Radiation-
related fatigue is an example of a systemic effect thought 
to be  mediated by radiation-induced cytokines that 
circulate through the body. Similarly, radiotherapy 
can modulate the immune system and responses via 
cytokines as well as circulating immune cells. Thus, 
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radiation can contribute to systemic, immune-mediated 
anti-tumor effects. Specifically, with its cytotoxic effects, 
radiation can trigger the release of tumor antigens 
and inflammatory factors from the dead tumor cells, 
leading to subsequent immune responses [134, 135]. 
Moreover, radiation can also induce immunogenic 
cell death, directly activate or suppress immune cells, 
modulate tumor microenvironment, and alter its 
immune responsiveness. For instance, in some cases, 
radiotherapy has been found to lead to an abscopal effect, 
where radiation treatment of a tumor at one site leads to 
recession of metastatic cancer at different sites [134]. The 
effect is believed to be mediated by the immune response 
activated by the primary site radiation that also targets 
distant tumor cells. Perhaps even more important, 
crucial for the immunomodulatory effects of radiation is 
the radiation-resulted tumor DNA breaks and ROS, and 
the cascade of biological events they trigger.

Once tumor DNA and damage associated molecular 
patterns (DAMPs) are sensed in  the immune system, 
cells such as phagocytes, B cells, and T cells can mature, 
activate, and respond [134]. For example, phagocytes help 
to clean up cellular debris while antigen-presenting cells 
and dendritic cell exposure to tumor DNA and DAMPs 
allow for antigen-presenting function and release of 
cytokines to stimulate other immune cells. Similarly, 
T-cell exposure to DNA and DAMPs can help with 
tumor infiltration and the production of inflammatory 
cytokines [134]. With increased chemotactic factors 
being released, increased T cells infiltrate the tumor 
potentially increasing (and also potentially decreasing) 
the immune response to radiation [134, 136]. It should 
be noted, however, that prolonged DNA and DAMPs can 
activate apoptosis in T cells mitigating their anti-tumor 
effects [137]. The abscopal effect is mediated by the same 
antigen-presenting mechanism which activates T cells 
that can travel throughout the body to regulate tumor 
metastasis cells. Supporting this, Wang et  al. studied 
melanoma in mouse models and found evidence of the 
abscopal effect due to increased responsiveness of tumor 
cells to immunotherapy following radiation treatment 
[138]. However, interestingly, the abscopal effect has also 
been observed in immuno-deficient mice and not only 
with RT, but also with surgery, indicating that the immune 
system is not the only mediator of this effect, and it is 
also not a unique feature of RT [139, 140]. Additionally, 
as noted by Walker et  al., the interconnectedness of 
metastatic tumors through systemic T-cell redistribution 
suggests that changes at one site, whether from surgery 
or radiotherapy, can provoke systemic responses, further 
supporting the complexity of the abscopal effect as a 
multifaceted phenomenon [141] .

Mathematical modeling can play a pivotal role in 
exploring the integration of radiotherapy with immune-
oncology and immunotherapy, particularly given the 
complexity of the interactions involved. Radiation has 
the potential to result in either immunogenic or immu-
nosuppressive effects. Radiation can interact with the 
tumor cells, the tumor microenvironment such as tumor 
vasculature and endothelial cells, and nearby healthy 
cells. Various factors such as dose, fractionation (hyper-, 
conventional, or hypo-fractionation), timing (concurrent 
or sequential, different delay intervals if sequential), and 
dose rate (conventional or FLASH) of the radiation, oxy-
gen effects, LET can all affect the interactions.

To address these complexities, multiple mathematical 
models combining radiation with immunotherapy or 
investigating the immune-modulating effects of radiation 
have been proposed. Mathematical modeling has also 
extensively studied the balance between preserving 
healthy cells and killing cancer cells in the context of 
immunoradiotherapy, for instance, the impact of dose 
distribution and dose rates on the level of circulating 
lymphocytes. Table  4 lists some examples of these 
studies. Collectively, they provide further evidence for 
combining immunotherapy and radiotherapy treatments.

Overall, mathematical modeling provides a necessary 
tool for studying the complex relationship and 
interplay between radiotherapy, immunotherapy, and 
immune-oncology.

Mathematical modeling and digital twins
A promising new direction of research and application 
is digital twinning. A digital twin usually refers to a 
virtual copy or model of a physical entity [155–157]. The 
digital twin mirrors the physical entity using real-time 
data to provide real-time monitoring, detailed analysis, 
design, planning, and optimization for the real-world 
entity or process. Central to any digital twin is a proper 
model, with good accuracy and incorporating reasonable 
uncertainty, allowing the digital twin to effectively mirror 
and interact with its physical counterpart. Mathematical 
models, therefore, play an integral role in digital 
twinning, by describing mechanism-based models, 
characterizing uncertainties, simulating varying levels of 
complexity, integrating multiple scales of data, etc.

In radiotherapy, digital twin research and applications 
are only starting, but the field is expected to grow rapidly 
in the next few years. As described in the previous sec-
tions, the interplay between radiation and tumor, healthy, 
and immune cells is complex, which is further compli-
cated by the sophistication of patient biology on an indi-
vidual level and the modulation of radiation techniques 
and variations. Mathematical models, both mechanistic 
and machine learning ones, can therefore serve as vital 
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tools in digital twin research and applications. In a pio-
neering study, digital twinning was employed to assimi-
late individual patients’ MRI data to personalize the 
growth and response parameters of the biology-based 
mathematical tumor growth, disease progression, and 
patient survival models for high-grade gliomas [158]. 
The digital twin based on MRI data before and during 
radiotherapy time points was used to predict outcomes 
post-radiotherapy. Eventually, such a system would then 
be able to adapt radiotherapy regimens and plans on an 
individual level based on predicted responses. In radiop-
harmaceutical therapy and theragnostic, because radia-
tion dosimetry depends both on radiation isotope decay 
and particle transport and on dynamic radiotracer accu-
mulation and washout in various tissues and organs, 
digital twins based on Monte Carlo simulations and 
pharmacokinetic modeling have provided new direc-
tions for accurate and individualized radiation dosim-
etry [159–161]. These advancements are then poised to 
personalize and optimize such radiotherapy applications. 
The digital twin concept has also been introduced to 

FLASH-RT modeling as well as proton adaptative radio-
therapy incorporating anatomical uncertainty and vari-
ability [160, 162].

Challenges, opportunities, and outlook
Mathematical modeling has been an essential tool in 
radiobiology and prescribing radiation dosimetry in 
cancer radiotherapy, as well as advancing the precision, 
personalization, and overall effectiveness of radiotherapy. 
Current challenges include the lingering uncertainties in 
the models, the difficulty in clinically translating more 
advanced models, and the complexity in effectively 
integrating different data scales to navigate tumor and 
patient heterogeneity.

Radiotherapy clinical practice is largely based on 
classical radiobiology, dose calculation, and plan 
optimization models where uncertainties are often 
overlooked or addressed using a margin concept, i.e. 
adding margins to the gross tumor volume in the RT 
target definition to account for uncertainty and ensure 
the tumor receives the intended dose. Along with the 

Table 4 Example studies exploring the effect of radiation on the immune system and the relationship between radiotherapy and 
immunotherapy

Authors Focus of mathematical model Key findings

Bunonyo et al. [142] Comparison of immunotherapy, chemotherapy, 
and radiotherapy on tumor growth

Found that combined therapy is most effective in killing 
tumors

Alfonso et al. [143] Computational model predicting patient-specific radiation 
immune scores

Predicted radiation immune scores correlated with survival 
and treatment outcomes

Kim et al. [144] Model predicting tumor response to CTLA-4 inhibitor 
and radiotherapy

Showed that starting CTLA-4 treatment before radiotherapy 
maximized treatment benefits in HCC patients

Moore et al. [102] Immunotherapy combined with ultrafractionated 
stereotactic adaptive RT in mice, with hypothesis on spaced-
out treatment pulses in PULSAR protocol

Demonstrated better tumor control with immunotherapy 
administered during or after personalized RT, suggesting 
that longer intervals between treatments enable better tumor 
and microenvironment adaptation

López Alfonso et al. [145] Analysis of SEER data comparing the sequence of surgery 
and radiotherapy

Found radiation before surgery led to improved overall 
and disease-free survival due to a stronger immune response

Serre et al. (2016) [146] Pharmacodynamic model combining radiotherapy 
with PD1–PDL1 and CTLA4 inhibitors

Illustrated synergy between immunotherapy and radiation, 
showing evidence of the abscopal effect

Xing et al. [147] Synergy between immunotherapy and personalized 
ultrafractionated stereotactic RT

Modeled the synergistic effect of combining immunotherapy 
and personalized RT schedules

Serre et al. [148] Model for immunologically effective dose in radiotherapy 
schedules

Proposed the concept of the immunologically effective dose, 
independent of immunotherapy type

Brüningk et al. [149] Evaluation of intermittent RT + pembrolizumab/
bevacizumab for high-grade glioma

Found intermittent RT was superior to hypofractionated RT 
for patients responsive to immunotherapy

Liu et al. [150] Differential equations modeling dynamics between healthy 
and cancer cells

Modeled the interaction of healthy cells and cancer cells 
under radiotherapy, showing coexistence dynamics

Cucinotta et al. [151] Model of lymphocyte survival after FLASH-RT Found that increasing dose rates in FLASH-RT increased 
the survival of lymphocytes

Sung et al. [152, 153] Model quantifying lymphocyte depletion and recovery 
after RT

Quantified faster recovery of lymphocytes 
after short fractionation regimens, showing that adding RT 
to immunotherapy increased clinical benefits

Jin et al. [154] Model predicting lymphocyte levels following radiation Unique model treating the immune system as an organ 
at risk, showing the importance of preserving lymphocytes 
to benefit from the abscopal effect
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recent advancement of radiation delivery accuracy 
and sophistication, these uncertainties began to be 
acknowledged and explicitly addressed in the models 
[163–165]. Even newer models also continue to involve 
uncertainties and could lead to poorer performance 
on heterogeneous datasets or populations [166–169]. 
Partially owing to such uncertainties and the model 
complexity, the more sophisticated models have 
experienced a slow clinical translation to replace classical 
models in standard clinical practices. Lastly, while multi-
scale, multi-modal data integration is highly desirable for 
next-generation radiotherapy research and applications 
and is amenable to mathematical modeling approaches, 
such endeavors are still in the infancy.

Nevertheless, this is an exciting time for research 
in mathematical modeling within the field of cancer 
radiotherapy. Besides using these approaches to better 
elucidate mechanisms of advanced radiotherapy 
modalities such as FLASH-RT, SRS/SBRT, SFRT, and 
immune-radiotherapy, they can also be applied to 
leverage the ever-expanding available medical data 
to further optimize radiotherapy and cancer care. 
Mathematical modeling can be used to optimize 
radiotherapy and maximize therapeutical ratio, 
integrating functional and molecular imaging data of 
the patient, radiomics and other deep learning extracted 
features from these and other intravital patient images, 
genomic, radiogenomic, and many immunotyping 
information obtained through single-cell sequencing or 
liquid biopsies, and information from various wearable 
or implantable devices and fitness trackers. Building on 
the mathematical models that are already widely used 
in various aspects of radiotherapy and cancer biology, 
further development and integration of these models 
using multi-scale, multi-modal, digital twins and other 
systems approaches is expected to usher radiotherapy 
into a new era of personalization and optimization.

Conclusion
Mathematical modeling plays a crucial role in 
radiotherapy for cancer, with applications spanning 
radiobiology, clinical workflows, SRS/SBRT, FLASH-RT, 
immune-radiotherapy, radiotherapy digital twins, and 
beyond. This narrative review explores these areas, 
focusing on emerging trends and innovations. As the field 
advances, the importance of mathematical modeling will 
only grow, driving further improvements and integrating 
multi-scale and multi-model medical data in precision 
and personalized cancer treatment approaches.
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