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Abstract
Background Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung 
cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly 
on multiple phases of four-dimensional (4D) computed tomography (CT), which leads to indirect results. This study 
proposed a DL-based method for automatic IGTV delineation using maximum and average intensity projections (MIP 
and AIP, respectively) from 4D CT.

Methods We retrospectively enrolled 124 patients with NSCLC and divided them into training (70%, n = 87) and 
validation (30%, n = 37) cohorts. Four-dimensional CT images were acquired, and the corresponding MIP and AIP 
images were generated. The IGTVs were contoured on 4D CT and used as the ground truth (GT). The MIP or AIP 
images, along with the corresponding IGTVs (IGTVMIP−manu and IGTVAIP−manu, respectively), were fed into the DL models 
for training and validation. We assessed the performance of three segmentation models—U-net, attention U-net, and 
V-net—using the Dice similarity coefficient (DSC) and the 95th percentile of the Hausdorff distance (HD95) as the 
primary metrics.

Results The attention U-net model trained on AIP images presented a mean DSC of 0.871 ± 0.048 and mean HD95 of 
2.958 ± 2.266 mm, whereas the model trained on MIP images achieved a mean DSC of 0.852 ± 0.053 and mean HD95 
of 3.209 ± 2.136 mm. Among the models, attention U-net and U-net achieved similar results, considerably surpassing 
V-net.

Conclusions DL models can automate IGTV delineation using MIP and AIP images, streamline contouring, and 
enhance the accuracy and consistency of lung cancer radiotherapy planning to improve patient outcomes.

Keywords Internal gross tumor volume, Automatic delineation, Deep learning, Non-small cell lung cancer, 
Radiotherapy, Four-dimensional computed tomography
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Background
Lung cancer remains the leading cause of cancer-related 
mortality worldwide [1, 2], with non-small cell lung 
cancer (NSCLC) accounting for approximately 85% of 
all cancer cases [3]. Radiation therapy is a cornerstone 
in lung cancer management [4, 5] and involves deliver-
ing high-dose radiation to malignant cells while spar-
ing the surrounding healthy tissue. Respiratory-induced 
intrafractional movement significantly affects the precise 
radiation dose delivered to a tumor, particularly in lung 
cancer cases. This variation can lead to insufficient tumor 
control or damage to organs at risk. To counter the 
effects of intrafractional motion, various adaptive tech-
niques, such as respiratory gating, tumor tracking, breath 
holding, and motion-encompassing strategies, have been 
developed.

The internal target volume (ITV) concept is widely 
accepted and utilized. Derived from four-dimensional 
(4D) computed tomography (CT), the ITV method 
expands the target volume to include the full range of 
tumor motion throughout the respiratory cycle. Four-
dimensional CT scans produce a series of three-dimen-
sional (3D) images, with each image capturing a distinct 
phase of the normal breathing cycle. Moreover, the 
internal gross tumor volume (IGTV) concept has been 
adopted to define the ITV more efficiently [6] because 
the ITV is calculated as the IGTV plus a margin that is 
often a fixed value, thus encompassing microscopic dis-
eases. Thus, precise delineation of the IGTV is crucial for 
effective radiation therapy planning. The most precise 
approach for delineating the IGTV on 4D CT datasets 
involves manually contouring the GTVs in all 10 respira-
tory phases and merging them to create a comprehensive 
IGTV. However, this dependency on manual delineation 
poses challenges in terms of efficiency, which highlights 
the critical need for innovative solutions in radiation 
oncology.

Maximum intensity projection (MIP) [7–9] and aver-
age intensity projection (AIP) [8, 9] have been exten-
sively discussed as alternatives. MIP captures the highest 
density of each pixel during the respiratory cycle of 4D 
CT. In practice, IGTV delineation is typically simplified 
by direct definition on the MIP image and is followed by 
adjustment according to the motion information from the 
breathing phases [6, 10]. Several studies [11, 12] have val-
idated its efficacy in target delineation; however, certain 
concerns [13–15] exist regarding its potential to underes-
timate the size of the ITV. AIP is another postprocessing 
method that creates a single 3D image by averaging the 
voxel intensities over all phases of the respiratory cycle, 
thus leveraging all the information from 4D CT. Simi-
larly, concerns have been raised regarding the potential 
issue of underestimating tumor volumes. Borm et al. [15] 
demonstrated that the IGTV contoured in AIP can differ 

significantly from the ITV contoured in 10 phases of 4D 
CT, with average deviations reaching 18.7%. In clinical 
practice, the aforementioned methods, which use AIP or 
MIP for contouring, typically employ uniform expansion 
for adjustment rather than individualized expansion, thus 
failing to reflect the unique breathing patterns of each 
patient. This implies that they are not universally appli-
cable to all types of respiratory motion [16], particularly 
in cases of irregular motion patterns.

AI offers promising solutions by automating and stan-
dardizing the tumor delineation process [17, 18], thereby 
improving the accuracy and consistency of radiation 
treatment planning. Given the potential of AI in medi-
cal imaging, several studies have explored its application 
for automatic lung cancer delineation. However, most 
previous studies [19–21] have focused on GTV segmen-
tation, whereas relatively few studies have addressed the 
prediction of IGTV. Li et al. [16] proposed a novel deep 
machine-learning algorithm with a linear exhaustive 
optimal combination framework for IGTV delineation on 
full 4D CT in patients with lung cancer treated via stereo-
tactic body radiation therapy. As an indirect solution, the 
proposed algorithm obtains the GTVs for all phases and 
then merges them to generate the IGTV, which is tedious 
and time-consuming. Furthermore, the errors generated 
from the automatic delineation of the GTV of each phase 
are not controllable, and they may gradually accumulate 
and result in significant errors in the merged IGTV. To 
address these issues, Ma et al. [6] designed deep-learning 
(DL) models for IGTV delineation directly on 4D CT. 
However, owing to the limitations of GPU memory, only 
three phases (100% In, 0% Ex, and an intermediate phase 
of 60% Ex) were utilized for model training. Although the 
pipeline is drastically simplified, the information in 4D 
CT images may not be fully exploited, leading to subop-
timal results.

In this study, considering the significant potential of 
MIP and AIP in IGTV delineation and the powerful 
modeling capabilities of AI, we established a new para-
digm for automatic IGTV delineation. Compared with 
4D CT, AIP and MIP images enable more efficient IGTV 
delineation by reducing resource usage during model 
training and inference while preserving key informa-
tion and improving delineation speed. Furthermore, 
AIP images are widely utilized for delineating normal 
tissues and organs at risk. Using AIP for IGTV delinea-
tion helps streamline the radiotherapy process, improv-
ing both workflow efficiency and accuracy. In this study, 
IGTVs were first manually contoured on MIP or AIP 
images. Subsequently, the contoured IGTVs and the cor-
responding images were sent to the DL network to gen-
erate the final IGTV. Three segmentation models, U-net 
[22], attention U-net [23], and V-net [24], were assessed 
for their performance on this task. To the best of our 
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knowledge, this study is the first to generate an IGTV 
directly from AIP or MIP images.

Methods
Materials
This study was approved by the Institutional Review 
Board (IRB) of Jiangxi Cancer Hospital, and the require-
ment for informed consent was waived owing to the ret-
rospective nature of the study. The inclusion criteria for 
this study were as follows: (1) a histologically confirmed 
diagnosis of NSCLC, (2) indication for radiotherapy and 
successful completion of the prescribed treatment, and 
(3) availability of high-quality 4D CT scans. The exclu-
sion criteria included (1) incomplete imaging data or 
poor image quality, (2) the requirement for radiotherapy 
at additional anatomical sites simultaneously, and (3) 
the presence of contraindications to radiotherapy. Fig-
ure  1 shows the pipeline of data collection, processing, 
and model development. One hundred and twenty-four 
patients with lung cancer treated at Jiangxi Cancer Hos-
pital were enrolled in this study. None of the patients 
underwent post-induction chemotherapy. The 4D CT 
images were acquired before treatment as part of rou-
tine clinical practice using a Siemens SOMATOM Defi-
nition AS CT scanner (Siemens, Erlangen, Germany). 
The scanner operated with a voxel spacing of either 
0.976 × 0.976 × 2 or 1.269 × 1.269 × 2  mm, ensuring high-
resolution imaging. The imaging parameters were set to 
80 mA and 120 kV. The 4D CT data were sorted into 10 
respiratory bins, covering 0–90% of the respiratory cycle. 
In this scheme, the 0% phase represents peak inhalation, 
whereas the other bins correspond to varying phases of 
the respiratory cycle, capturing tumor motion across dif-
ferent breathing states. Among these, 70% (n = 87) were 
randomly assigned to the training cohort for model train-
ing, 10% (n = 12) to the validation cohort for hyperpa-
rameter tuning, and 20% (n = 25) to the testing cohort for 
model evaluation.

AIP and MIP images were generated from 4D CT, and 
the corresponding IGTVs were delineated by a thoracic 
radiation oncologist with 10 years of experience using 
the Eclipse software (version 13.5). The GTV included 
only the primary tumor. A preset lung window setting 
(W = 1600 and L = 600) was used to delineate tumors sur-
rounded by lung tissue, whereas a mediastinum preset 
window setting (W = 400 and L = 20) was used to delin-
eate primary tumors invading the mediastinum or chest 
wall [25]. Similarly, the GTV was contoured phase by 
phase on 4D CT by the same oncologist and then fused 
to generate the ground truth IGTV (IGTVgt). A senior 
thoracic radiation oncologist reviewed all the target 
volumes.

Data preprocessing
The AIP (or MIP) images, along with the corresponding 
IGTVAIP−manu (or IGTVMIP−manu) and IGTVgt, were resa-
mpled to a resolution of 1 × 1 × 2  mm. To reduce both 
training and inference times while simplifying model 
coverage, a 112 × 112 × 80-pixel region centered around 
the IGTVAIP−manu (or IGTVMIP−manu) was automatically 
cropped. The intensities of the images were normal-
ized to a range of 0–1. During the model-training stage, 
data augmentation techniques were applied, includ-
ing random flips across the three axes (p = 0.1), random 
90-degree rotations (p = 0.1), and random intensity shifts 
with an offset of 0.1 (p = 0.5).

Networks
Convolutional neural networks have been extensively 
used for image segmentation tasks in medical image 
analysis. U-net [22], attention U-net [23], and V-net 
[24] are three popular architectures, each with unique 
strengths. In this study, these models were adopted for 
IGTV delineation.

A two-channel structure was used for the input to the 
models: one channel comprised the AIP or MIP image, 
and the other channel contained the corresponding 
manually contoured IGTV (either the IGTVAIP−manu or 
IGTVMIP−manu). The number of channels in U-net and 
attention U-net were set to 32, 64, 128, and 256, whereas 
in V-net, the channels were configured to 16, 32, 64, 128, 
and 256.

Implementation details
The models were implemented in Python (version 3.10.9) 
using PyTorch [26] (version 2.0.1;  h t t p  s : /  / g i t  h u  b . c  o m /  p y t 
o  r c  h / p y t o r c h) on a server equipped with eight NVIDIA 
GeForce RTX 4090 GPUs. The adaptive gradient algo-
rithm (AdamW) [27] with a weight decay of 1e − 5 served 
as the optimizer. All the networks were trained using the 
optimal learning rate with a maximum of 100 iterations. 
The batch size was set to either 32 or 64. The final hyper-
parameters were chosen by evaluating the model perfor-
mance on the validation set.

Evaluation metrics
The Dice similarity coefficient (DSC), surface DSC with 
a 1 mm tolerance value, 95th percentile of the Hausdorff 
distance (HD95), sensitivity, and specificity were used 
to evaluate the performance of IGTV delineation. Dif-
ferences between the models were assessed using the 
Mann–Whitney U test. The statistical significance was 
set at a p-value < 0.05.

The performance of the proposed model was assessed 
by comparing the predicted IGTV with the IGTVgt. Addi-
tionally, we compared the manually contoured IGTV 
(IGTVAIP−manu or IGTVMIP−manu) to the IGTVgt, which 

https://github.com/pytorch/pytorch
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enabled us to evaluate the error introduced by manual 
delineation directly on AIP or MIP images and assess the 
additional value of our model in improving IGTV delin-
eation accuracy.

Results
The characteristics of the enrolled patients are pre-
sented in Table  1. No significant differences were 
observed between the training cohort (N = 87) and test 
cohort (N = 25) in terms of age (p-value = 0.804), gender 
(p-value = 0.127), or overall cancer stage (p-value = 0.721).

Fig. 1 Pipeline of data collection, preprocessing, and model training. MIP and AIP: maximum and average intensity projections, respectively; IGTV: inter-
nal gross tumor volume. IGTVAIP−manu and IGTVMIP−manu: manually contoured tumor volumes on AIP and MIP images, respectively, used as inputs for the 
model. IGTVgt: ground truth IGTV, which is derived from the fusion of GTVs contoured across different breathing phases
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The performance of the models for MIP-based 
IGTV delineation on the test cohort is summarized 
in Table  2. Attention U-net showed the highest DSC 
(0.852 ± 0.053), followed by U-net (0.829 ± 0.055) and 
V-net (0.819 ± 0.073). The surface DSC showed similar 
trends, with attention U-net achieving the highest score 
(0.760 ± 0.130) compared with U-net (0.688 ± 0.150) and 
V-net (0.673 ± 0.123). For HD95, the attention U-net 
performed best (3.209 ± 2.136  mm), whereas U-net and 
V-net achieved higher HD95 values (3.264 ± 2.157 and 
3.903 ± 2.157  mm, respectively). In terms of sensitivity, 
U-net (0.849 ± 0.095) outperformed the other models, 
followed by attention U-net (0.818 ± 0.108) and V-net 
(0.759 ± 0.142). Finally, all models demonstrated excellent 
specificity (0.999 ± 0.001). All models showed improved 
delineated IGTVs compared with the manually con-
toured IGTVs on MIP images (IGTVMIP−manu).

Table  3 summarizes the performance of the models 
for AIP-based IGTV delineation for the test cohort. The 
attention U-net achieved the highest DSC (0.871 ± 0.048) 
and surface DSC (0.801 ± 0.133), followed closely by 
U-net (0.870 ± 0.048 for the DSC and 0.797 ± 0.139 for 
the surface DSC). V-net achieved a slightly lower per-
formance, with a DSC of 0.853 ± 0.051 and surface DSC 
of 0.742 ± 0.129. For HD95, the U-net model performed 
best (2.932 ± 2.262  mm), whereas attention U-net and 
V-net yielded slightly higher values (2.958 ± 2.266 and 
3.263 ± 2.319  mm, respectively). In terms of sensitivity, 
V-net was the best (0.859 ± 0.091), closely followed by 
attention U-net (0.855 ± 0.093) and U-net (0.852 ± 0.090). 
All the models showed excellent specificity, achieving 
perfect scores (0.999 ± 0.001). All models demonstrated 
improvements in IGTV delineation accuracy compared 
with that of AIP-based manual contouring of IGTVs 
(IGTVAIP−manu).

Compared with MIP, AIP generally showed slightly bet-
ter performance across nearly all the metrics, with a DSC 
of 0.871 vs. 0.852, surface DSC of 0.801 vs. 0.760, HD95 
of 2.932  mm vs. 3.209  mm, and sensitivity of 0.859 vs. 
0.849.

The visualization results for a typical case from the test 
cohort, along with the AIP images, are shown in Fig. 2. 
The DSC and HD95 values for this case were 0.929 and 
1.414  mm, respectively. The red contours represent the 
IGTVgt, whereas the green and orange contours represent 
the IGTVAIP−pred (predictions from the attention U-net) 
and the manually contoured IGTV (IGTVAIP−manu), 
respectively. Twenty-four slices are presented, each 
labeled with sensitivity and specificity, which were cal-
culated by comparing the IGTVAIP−pred with the IGTVgt. 
In most slices, our model correctly predicted the tumor, 
showing a significant improvement over the manually 

Table 1 Characteristics of patients in the training and test 
cohorts
Characteristics Training cohort Test cohort P-value
Number of patients N = 87 N = 25
Age (y), median [Q1, 
Q3]

66.0 [59.0,74.0] 66.0 [60.0,75.0] 0.804

Gender, n (%) 0.127
Male 57 (65.5) 21 (84.0)
Female 30 (34.5) 4 (16.0)

Overall stage, n (%) 0.721
I 15 (17.2) 4 (16.0)
II 4 (4.6) 0 (0)
III 8 (9.2) 2 (8.0)
IV 60 (69.0) 19 (76.0)

Note: P-values are provided to assess the statistical significance between the 
training and test cohorts for each characteristic. A p-value < 0.05 indicates a 
statistically significant difference between the groups

Table 2 Performance of deep-learning models for IGTV delineation using MIP images for the test cohort
IGTVMIP−manu Attention U-net U-net V-net

DSC 0.713 ± 0.117 0.852 ± 0.053 0.829 ± 0.055 0.819 ± 0.073
Surface DSC 0.466 ± 0.231 0.760 ± 0.130 0.688 ± 0.150 0.673 ± 0.123
HD95 (mm) 4.146 ± 2.229 3.209 ± 2.136 3.264 ± 2.015 3.903 ± 2.157
Sensitivity 0.571 ± 0.151 0.818 ± 0.108 0.849 ± 0.095 0.759 ± 0.142
Specificity 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
Note: The IGTVMIP−manu column presents the comparison between the manually contoured IGTV on MIP images and the gold standard IGTV (IGTVgt), whereas the 
model columns present the comparison between the model predictions and the IGTVgt. The model with the best performance in each metric is highlighted in bold

Table 3 Performance of deep-learning models for IGTV delineation using AIP images for the test cohort
IGTVAIP−manu Attention U-net U-net V-net

DSC 0.689 ± 0.088 0.871 ± 0.048 0.870 ± 0.048 0.853 ± 0.051
Surface DSC 0.390 ± 0.183 0.801 ± 0.133 0.797 ± 0.139 0.742 ± 0.129
HD95 (mm) 4.222 ± 2.394 2.958 ± 2.266 2.932 ± 2.262 3.263 ± 2.319
Sensitivity 0.533 ± 0.102 0.855 ± 0.093 0.852 ± 0.090 0.859 ± 0.091
Specificity 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001
Note: The IGTVAIP−manu column presents the comparison between the manually contoured IGTV on AIP images and the gold standard IGTV (IGTVgt), whereas the 
model columns present the comparison between the model predictions and the IGTVgt. The model with the best performance in each metric is highlighted in bold
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Fig. 2 Visualization results for a case with average intensity projection images. The red contours represent the ground truth internal gross tumor volume 
(IGTV), the green contours represent the IGTV predicted by the attention U-net model, and the orange contours represent the manually contoured IGTV
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contoured IGTV. Note that in Figs.  2(c) and 2(w), the 
tumor target was almost invisible, making manual con-
touring of the IGTV on the AIP images impractical; 
however, our model performed well and successfully 
identified the tumor targets. Moreover, in the top and 
bottom slices, as shown in Figs. 2(b) and 2(x), our model 
failed and tended to make false positive predictions, mis-
takenly identifying the presence of tumors where none 
existed.

Discussion
In this study, we introduced a novel automated IGTV 
contouring method specifically designed for lung cancer 
radiotherapy using DL models. Contouring the IGTV is 
a crucial aspect of radiotherapy treatment planning for 
mitigating the impact of intra-fractional target motion. 
This process is often time consuming and subject to vari-
ability among observers. Therefore, DL-assisted auto-
matic segmentation is gaining popularity.

Regarding the automated delineation of the IGTV in 
patients with lung cancer, Li et al. [16] proposed a DL 
framework for automated IGTV delineation using 4D CT, 
where GTVs from each respiratory phase are generated 
and combined to form the final IGTV. Although innova-
tive, this method is labor intensive and prone to errors 
because inaccuracies in phase-specific GTVs accumulate 
when the GTVs are merged into the final IGTV. Ma et al. 
[6] proposed an improved method using 4D CT; however, 
owing to GPU memory limitations, only three specific 
phases (0% Ex, 60% Ex, and 100% In) were used, yielding 
a DSC of 0.7405 and HD95 of 15.61 mm, which are lower 
than those obtained by our model. We believe that using 
only these phases leads to inaccuracies in IGTV delinea-
tion because they do not capture full tumor motion. To 
overcome this, our study utilized AIP and MIP images, 
maximizing the available information in 4D CT scans 
and providing a more comprehensive and accurate 
delineation of the IGTV by capturing a broader range of 
tumor motion and density variations [28]. However, the 
methodological differences between our study and pre-
vious works may influence segmentation performance. 
Factors such as variations in patient demographics, CT 
acquisition settings, breathing motion management 
strategies, and tumor localization criteria could contrib-
ute to differences in reported metrics. Therefore, future 
studies would benefit from more rigorous comparisons 
that account for these variables to ensure a fair and reli-
able evaluation. Additionally, in current clinical practice, 
AIP is used to delineate normal tissues and organs at risk, 
whereas GTVs are contoured across multiple breathing 
phases and fused to create the final IGTV. Our method 
improves upon this by directly using AIP for IGTV delin-
eation, thus eliminating the need for multiple phase 
delineation and fusion. We streamlined the process by 

relying solely on AIP, improving efficiency without com-
promising accuracy, and reducing workflow complexity.

MIP provides a visualization method in which the 
highest intensity voxel is projected along the viewing 
direction, helping identify the full extent of tumors that 
exhibit higher radiodensity than the surrounding tis-
sues [13]. This is particularly useful in thoracic imaging, 
where tumors must be distinguished from the surround-
ing normal lung tissue, which can vary significantly in 
density owing to respiratory motion. In contrast, AIP 
averages the intensity of all voxels along each projection 
path, offering a more holistic view of tumor density varia-
tions. While AIP mitigates the potential overemphasis 
on high-density artifacts commonly observed in MIP, it 
introduces the risk of underestimating tumor volumes. 
Specifically, due to averaging intensities across all respi-
ratory phases, AIP may obscure the extremes of tumor 
motion, potentially leading to an incomplete delinea-
tion of the IGTV. Previous studies have reported under-
estimation risks associated with AIP-based delineation 
methods [14]. For example, Borm et al. [15] indicated 
that the ITV contoured in MIP and AIP differs signifi-
cantly from the ITV contoured in 10 phases of a 4D CT 
scan, with average deviations potentially as large as 25%. 
Furthermore, Tibdewal et al. [7] concluded that com-
pared with ITV delineation in 10 phases of 4D CT, con-
touring the ITV using MIP is significantly smaller and 
may miss tumors. Given that IGTV incorporates tumor 
motion similarly to ITV, these findings suggest a likely 
risk of underestimation when using AIP images for IGTV 
delineation. Our findings are consistent with these obser-
vations because the consistency between IGTVMIP−manu 
and IGTVgt was low, as shown in Tables 2 and 3. When 
DL models were introduced, the generated IGTV showed 
a significant improvement. Specifically, the IGTV gen-
erated using AIP images (IGTVAIP−pred) demonstrated 
superior performance compared with those generated 
using MIP images (IGTVMIP−pred). This is because AIP 
images contain intensity information from all phases, 
whereas MIP images reflect only the phase with the high-
est intensity.

Three models—U-net, attention U-net, and V-net—
were compared in terms of their performance in gener-
ating IGTVs. The results indicate that both U-net and 
attention U-net outperformed V-Net, although the statis-
tical analysis revealed no significant differences between 
the models in either the DSC or HD95. The performance 
of attention U-net can be attributed to its enhanced focus 
mechanism, which aids in capturing fine details and vari-
ations in the tumor region. However, the lack of a signifi-
cant difference suggests that the basic U-net architecture 
is sufficiently robust for IGTV segmentation in this data-
set. The slightly lower performance of V-net could be due 
to its complexity and the difficulty of model convergence 



Page 8 of 10Huang et al. Radiation Oncology           (2025) 20:59 

with the AIP and MIP images. This might be attributed to 
the design of V-net, which is optimized for more hetero-
geneous structures, rendering it less suited to the simpler 
intensity variations in these images.

While numerical metrics such as the DSC, Surface 
DSC, HD95, sensitivity, and specificity provide quantita-
tive insights into segmentation performance, their clini-
cal implications deserve explicit interpretation. In clinical 
radiation therapy planning, higher DSC and lower HD95 
values translate directly into more precise delineation 
of tumor boundaries, potentially enabling clinicians to 
reduce PTV margins without compromising treatment 
effectiveness [29, 30]. Smaller margins can subsequently 
reduce the radiation dose to adjacent healthy tissues, 
thus decreasing treatment-related toxicity and improv-
ing patients’ quality of life. Furthermore, higher sensitiv-
ity reduces the risk of missing tumor regions, whereas 
higher specificity decreases false positives, collectively 
contributing to more precise and reliable treatment plan-
ning [31, 32]. Therefore, the observed improvements in 
these metrics using our proposed approach could sig-
nificantly impact clinical practice by improving targeting 
accuracy, reducing inter-observer variability, streamlin-
ing workflows, and ultimately enhancing patient out-
comes [33].

This study has several limitations. First, this was a pre-
liminary feasibility study conducted at a single center 
with a small number of patients to explore IGTV delin-
eation using AIP or MIP images. The findings have not 
been validated via bootstrapping, via cross-validation, or 
across multiple centers, which may affect the generaliz-
ability of the results. To address this limitation, future 
studies will focus on multi-institutional validation, which 
will involve a more diverse patient population, variations 
in imaging protocols, and different clinical workflows. 
This will help assess model robustness across heteroge-
neous datasets and improve its applicability in real-world 
clinical settings. Second, the models used—U-net, atten-
tion U-net, and V-net—are standard models and are not 
specifically tailored for our dataset or task. Future studies 
should focus on developing customized models for bet-
ter performance. Third, the study relied on manual IGTV 
contouring, which is time-consuming and may be subject 
to interobserver variability. Although we tested multiple 
models, including U-net, attention U-net, and V-net, 
fully automatic contouring of AIP or MIP images without 
any manual delineation was unsuccessful owing to model 
convergence issues. Consequently, we adopted a clinical 
practice approach by manually contouring the IGTV on 
AIP or MIP images and using these contours to train the 
model. To mitigate the variability introduced by manual 
contouring, future studies should explore standardized 
contouring protocols, structured observer training pro-
grams, and inter-observer agreement analyses to improve 

consistency. Additionally, incorporating consensus-based 
annotations and leveraging AI-assisted refinement tech-
niques could enhance model robustness and generaliz-
ability. Fourth, the tumor motion amplitude and tumor 
location (e.g., upper-lobe tumors) may impact segmenta-
tion performance. The automated delineation for cases 
with larger tumor motion is more challenging, potentially 
reducing segmentation accuracy. Future studies should 
investigate the influence of these factors and explore 
motion-aware network architectures or adaptive train-
ing strategies to improve performance in such scenarios. 
Finally, we did not explore the potential benefits of fus-
ing MIP and AIP images, which could enhance IGTV 
segmentation by leveraging the strengths of both meth-
ods. Future research should investigate this integration to 
determine whether it can provide better results.

Conclusions
This study aimed to improve the accuracy of IGTV seg-
mentation using DL models. The results indicate that 
these models have the potential for automatic IGTV 
delineation using both MIP and AIP images, along with 
their corresponding manually contoured IGTVs. Among 
these, AIP images demonstrated superior performance 
across multiple quantitative metrics. The proposed 
method streamlines the contouring process, leading to 
more accurate and consistent radiation therapy planning 
for lung cancer, thereby improving patient outcomes. In 
future, validating these findings in multi-institutional set-
tings will be crucial to assess their generalizability and 
robustness across diverse patient populations and clinical 
practices. Further research should focus on refining the 
model’s performance, optimizing the workflow for clini-
cal implementation, and exploring its impact on treat-
ment efficiency and patient outcomes in broader clinical 
contexts.
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